Home
Class 12
MATHS
Maximize z = 5x + 10y subject to constra...

Maximize `z = 5x + 10y` subject to constraints `x + 2y le 10 , 3x + y le 12 , x ge 0 , y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To maximize the function \( z = 5x + 10y \) subject to the constraints \( x + 2y \leq 10 \), \( 3x + y \leq 12 \), \( x \geq 0 \), and \( y \geq 0 \), we will follow these steps: ### Step 1: Identify the Constraints We have the following constraints: 1. \( x + 2y \leq 10 \) 2. \( 3x + y \leq 12 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines, we convert the inequalities into equations: 1. \( x + 2y = 10 \) 2. \( 3x + y = 12 \) ### Step 3: Find Intercepts of Each Line - For \( x + 2y = 10 \): - When \( x = 0 \): \( 2y = 10 \) → \( y = 5 \) (Intercept: \( (0, 5) \)) - When \( y = 0 \): \( x = 10 \) (Intercept: \( (10, 0) \)) - For \( 3x + y = 12 \): - When \( x = 0 \): \( y = 12 \) (Intercept: \( (0, 12) \)) - When \( y = 0 \): \( 3x = 12 \) → \( x = 4 \) (Intercept: \( (4, 0) \)) ### Step 4: Find the Intersection of the Lines To find the intersection of the two lines, we solve the equations: 1. \( x + 2y = 10 \) 2. \( 3x + y = 12 \) From the first equation, express \( x \): \[ x = 10 - 2y \] Substituting into the second equation: \[ 3(10 - 2y) + y = 12 \] \[ 30 - 6y + y = 12 \] \[ 30 - 5y = 12 \] \[ 5y = 18 \] \[ y = \frac{18}{5} \] Now substitute \( y \) back to find \( x \): \[ x = 10 - 2\left(\frac{18}{5}\right) \] \[ x = 10 - \frac{36}{5} \] \[ x = \frac{50}{5} - \frac{36}{5} = \frac{14}{5} \] So, the intersection point is \( \left(\frac{14}{5}, \frac{18}{5}\right) \). ### Step 5: Identify the Feasible Region The feasible region is bounded by the lines and the axes. We will plot the points: - \( (0, 0) \) - \( (0, 5) \) - \( (4, 0) \) - \( \left(\frac{14}{5}, \frac{18}{5}\right) \) ### Step 6: Evaluate the Objective Function at Each Vertex Now we evaluate \( z = 5x + 10y \) at each vertex: 1. At \( (0, 5) \): \[ z = 5(0) + 10(5) = 50 \] 2. At \( (4, 0) \): \[ z = 5(4) + 10(0) = 20 \] 3. At \( \left(\frac{14}{5}, \frac{18}{5}\right) \): \[ z = 5\left(\frac{14}{5}\right) + 10\left(\frac{18}{5}\right) = 14 + 36 = 50 \] ### Step 7: Determine the Maximum Value The maximum value of \( z \) occurs at both \( (0, 5) \) and \( \left(\frac{14}{5}, \frac{18}{5}\right) \) with \( z = 50 \). ### Conclusion Thus, the maximum value of \( z \) is \( 50 \) at the points \( (0, 5) \) and along the line segment connecting \( (0, 5) \) to \( \left(\frac{14}{5}, \frac{18}{5}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (E. Activities)|3 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II ASSIGNMENT PROBLEMS AND SEQUENCING (I. Select and write the most appropriate answer from the given alternatives for each sub question.)|12 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (C. Fill in each of the following blanks)|12 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Maximize Z = 400x + 500y subject to constraints x + 2y le 80 ,2x + y le 90, x ge 0 , y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

Maximize z =2x + 3y subject to constraints x + 4y le 8, 3x + 2y le 14 , x ge 0, y ge 0 .

Solve the linear programming problem. Maximise Z = x + 2y Subject to constraints x - y le 10, 2x +3y le 20 and x ge 0, y ge 0

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Consider the following LPP: Maximize Z = 3x + 2y subject to the constraints: x + 2y le 10, 3x + y le 15, x, y ge 0 . (a) Draw the feasible region. (b)Find the corner points of the feasible region. (c) Find the maximum value of Z.

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Solve the following L.P.P graphically Minimise and maximise z = 3x + 9y Subject to the constraints x + 3y le 60 x + y ge 10 x le y x ge 0, y ge 0

Graphically maximise Z = 9x + 10y subject to constraints : 9x + 2y ge 20, x - 2y ge 0, x + y le 9, x ge 0, y ge 0 .