Home
Class 12
MATHS
Maximize Z = 400x + 500y subject to cons...

Maximize `Z = 400x + 500y` subject to constraints `x + 2y le 80 ,2x + y le 90, x ge 0 , y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of maximizing \( Z = 400x + 500y \) subject to the given constraints, we will follow these steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x + 2y \leq 80 \) 2. \( 2x + y \leq 90 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines of the constraints, we convert the inequalities into equations: 1. \( x + 2y = 80 \) 2. \( 2x + y = 90 \) ### Step 3: Find Intercepts of the Lines For the first line \( x + 2y = 80 \): - When \( x = 0 \): \( 2y = 80 \) → \( y = 40 \) (Point: \( (0, 40) \)) - When \( y = 0 \): \( x = 80 \) (Point: \( (80, 0) \)) For the second line \( 2x + y = 90 \): - When \( x = 0 \): \( y = 90 \) (Point: \( (0, 90) \)) - When \( y = 0 \): \( 2x = 90 \) → \( x = 45 \) (Point: \( (45, 0) \)) ### Step 4: Find the Intersection of the Lines To find the intersection of the two lines, we solve the equations: 1. \( x + 2y = 80 \) 2. \( 2x + y = 90 \) From the first equation, express \( x \): \[ x = 80 - 2y \] Substituting into the second equation: \[ 2(80 - 2y) + y = 90 \] \[ 160 - 4y + y = 90 \] \[ 160 - 3y = 90 \] \[ 3y = 70 \] \[ y = \frac{70}{3} \] Now substitute \( y \) back to find \( x \): \[ x = 80 - 2\left(\frac{70}{3}\right) \] \[ x = 80 - \frac{140}{3} \] \[ x = \frac{240 - 140}{3} = \frac{100}{3} \] Thus, the intersection point is \( \left(\frac{100}{3}, \frac{70}{3}\right) \). ### Step 5: Identify the Feasible Region The feasible region is determined by the constraints. We plot the lines and shade the area that satisfies all inequalities: - The area must be below both lines and in the first quadrant (since \( x \geq 0 \) and \( y \geq 0 \)). ### Step 6: Evaluate the Objective Function at the Vertices The vertices of the feasible region are: 1. \( (0, 0) \) 2. \( (0, 40) \) 3. \( (45, 0) \) 4. \( \left(\frac{100}{3}, \frac{70}{3}\right) \) Now we calculate \( Z \) at each vertex: 1. At \( (0, 0) \): \[ Z = 400(0) + 500(0) = 0 \] 2. At \( (0, 40) \): \[ Z = 400(0) + 500(40) = 20000 \] 3. At \( (45, 0) \): \[ Z = 400(45) + 500(0) = 18000 \] 4. At \( \left(\frac{100}{3}, \frac{70}{3}\right) \): \[ Z = 400\left(\frac{100}{3}\right) + 500\left(\frac{70}{3}\right) \] \[ = \frac{40000}{3} + \frac{35000}{3} = \frac{75000}{3} \approx 25000 \] ### Step 7: Determine the Maximum Value The maximum value of \( Z \) occurs at the point \( \left(\frac{100}{3}, \frac{70}{3}\right) \) and is: \[ Z_{\text{max}} = 25000 \] ### Final Answer Thus, the maximum value of \( Z \) is \( 25000 \) at the point \( \left(\frac{100}{3}, \frac{70}{3}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (E. Activities)|3 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II ASSIGNMENT PROBLEMS AND SEQUENCING (I. Select and write the most appropriate answer from the given alternatives for each sub question.)|12 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (C. Fill in each of the following blanks)|12 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

Maximize z = 5x + 10y subject to constraints x + 2y le 10 , 3x + y le 12 , x ge 0 , y ge 0

Solve the linear programming problem. Maximise Z = x + 2y Subject to constraints x - y le 10, 2x +3y le 20 and x ge 0, y ge 0

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

y - 2x le 1, x + y le 2, x ge 0, y ge 0

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize z =2x + 3y subject to constraints x + 4y le 8, 3x + 2y le 14 , x ge 0, y ge 0 .