Home
Class 12
MATHS
Minimize Z = 2x + 3y subject to constra...

Minimize `Z = 2x + 3y ` subject to constraints `x + y ge 6 , 2x + y ge 7, x + 4y ge 8 , x ge 0 , y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To minimize the function \( Z = 2x + 3y \) subject to the constraints: 1. \( x + y \geq 6 \) 2. \( 2x + y \geq 7 \) 3. \( x + 4y \geq 8 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) we will follow these steps: ### Step 1: Identify the Constraints We start by rewriting the inequalities as equations to find the boundary lines: 1. \( x + y = 6 \) 2. \( 2x + y = 7 \) 3. \( x + 4y = 8 \) ### Step 2: Find Intercepts for Each Line We will find the intercepts for each line to plot them: - For \( x + y = 6 \): - When \( x = 0 \), \( y = 6 \) → Point (0, 6) - When \( y = 0 \), \( x = 6 \) → Point (6, 0) - For \( 2x + y = 7 \): - When \( x = 0 \), \( y = 7 \) → Point (0, 7) - When \( y = 0 \), \( x = 3.5 \) → Point (3.5, 0) - For \( x + 4y = 8 \): - When \( x = 0 \), \( y = 2 \) → Point (0, 2) - When \( y = 0 \), \( x = 8 \) → Point (8, 0) ### Step 3: Find Points of Intersection Next, we find the points of intersection of the lines: 1. **Intersection of \( x + y = 6 \) and \( 2x + y = 7 \)**: - Subtract the first equation from the second: \[ (2x + y) - (x + y) = 7 - 6 \implies x = 1 \] - Substitute \( x = 1 \) back into \( x + y = 6 \): \[ 1 + y = 6 \implies y = 5 \] - Intersection Point: \( (1, 5) \) 2. **Intersection of \( 2x + y = 7 \) and \( x + 4y = 8 \)**: - Multiply the first equation by 4: \[ 8x + 4y = 28 \] - Now subtract \( x + 4y = 8 \): \[ 8x + 4y - (x + 4y) = 28 - 8 \implies 7x = 20 \implies x = \frac{20}{7} \] - Substitute \( x = \frac{20}{7} \) back into \( 2x + y = 7 \): \[ 2\left(\frac{20}{7}\right) + y = 7 \implies \frac{40}{7} + y = 7 \implies y = 7 - \frac{40}{7} = \frac{9}{7} \] - Intersection Point: \( \left(\frac{20}{7}, \frac{9}{7}\right) \) 3. **Intersection of \( x + y = 6 \) and \( x + 4y = 8 \)**: - From \( x + y = 6 \), we have \( y = 6 - x \). - Substitute into \( x + 4y = 8 \): \[ x + 4(6 - x) = 8 \implies x + 24 - 4x = 8 \implies -3x = -16 \implies x = \frac{16}{3} \] - Substitute \( x = \frac{16}{3} \) back into \( y = 6 - x \): \[ y = 6 - \frac{16}{3} = \frac{18 - 16}{3} = \frac{2}{3} \] - Intersection Point: \( \left(\frac{16}{3}, \frac{2}{3}\right) \) ### Step 4: Identify the Feasible Region The feasible region is determined by the intersection points and the constraints. The points we have are: 1. \( (0, 7) \) 2. \( (1, 5) \) 3. \( \left(\frac{20}{7}, \frac{9}{7}\right) \) 4. \( \left(\frac{16}{3}, \frac{2}{3}\right) \) 5. \( (6, 0) \) ### Step 5: Evaluate the Objective Function at Each Vertex Now we evaluate \( Z = 2x + 3y \) at each of the vertices: 1. At \( (0, 7) \): \[ Z = 2(0) + 3(7) = 21 \] 2. At \( (1, 5) \): \[ Z = 2(1) + 3(5) = 2 + 15 = 17 \] 3. At \( \left(\frac{20}{7}, \frac{9}{7}\right) \): \[ Z = 2\left(\frac{20}{7}\right) + 3\left(\frac{9}{7}\right) = \frac{40}{7} + \frac{27}{7} = \frac{67}{7} \approx 9.57 \] 4. At \( \left(\frac{16}{3}, \frac{2}{3}\right) \): \[ Z = 2\left(\frac{16}{3}\right) + 3\left(\frac{2}{3}\right) = \frac{32}{3} + \frac{6}{3} = \frac{38}{3} \approx 12.67 \] 5. At \( (6, 0) \): \[ Z = 2(6) + 3(0) = 12 \] ### Step 6: Determine the Minimum Value Comparing all the values of \( Z \): - \( Z(0, 7) = 21 \) - \( Z(1, 5) = 17 \) - \( Z\left(\frac{20}{7}, \frac{9}{7}\right) \approx 9.57 \) - \( Z\left(\frac{16}{3}, \frac{2}{3}\right) \approx 12.67 \) - \( Z(6, 0) = 12 \) The minimum value occurs at the point \( \left(\frac{20}{7}, \frac{9}{7}\right) \) with \( Z \approx 9.57 \). ### Final Answer The minimum value of \( Z \) is approximately \( 9.57 \) at the point \( \left(\frac{20}{7}, \frac{9}{7}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (E. Activities)|3 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II ASSIGNMENT PROBLEMS AND SEQUENCING (I. Select and write the most appropriate answer from the given alternatives for each sub question.)|12 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (C. Fill in each of the following blanks)|12 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Minimize Z = x + 4y subject to constraints x + 3y ge 3 , 2x + y ge 2, x ge 0 , y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Minimize z = 24x + 40y subject to constraints 6x + 8y ge 96, 7x + 12y ge 168, x ge 0 , y ge 0

Solve the LPP graphically: Minimize Z = 4x + 5y Subject to the constraints 5x + y ge 10, x + y ge 6, x + 4y ge 12, x , y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Maximize: Z = -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximise and Minimise : Z = 4x + 3y -7 subject to the constraints: x + y le 10, x + y ge 3, x le 8, y le 9, x, y ge 0