Home
Class 12
MATHS
Solve the LPP graphically: Minimize Z = ...

Solve the LPP graphically: Minimize `Z = 4x + 5y ` Subject to the constraints `5x + y ge 10, x + y ge 6, x + 4y ge 12, x , y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given Linear Programming Problem (LPP) graphically, we will follow these steps: ### Step 1: Write the objective function and constraints We need to minimize the objective function: \[ Z = 4x + 5y \] Subject to the constraints: 1. \( 5x + y \geq 10 \) 2. \( x + y \geq 6 \) 3. \( x + 4y \geq 12 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert inequalities to equations To graph the constraints, we convert the inequalities into equations: 1. \( 5x + y = 10 \) 2. \( x + y = 6 \) 3. \( x + 4y = 12 \) ### Step 3: Find intercepts of each line **For \( 5x + y = 10 \):** - When \( x = 0 \): \( y = 10 \) (Point: \( (0, 10) \)) - When \( y = 0 \): \( 5x = 10 \) → \( x = 2 \) (Point: \( (2, 0) \)) **For \( x + y = 6 \):** - When \( x = 0 \): \( y = 6 \) (Point: \( (0, 6) \)) - When \( y = 0 \): \( x = 6 \) (Point: \( (6, 0) \)) **For \( x + 4y = 12 \):** - When \( x = 0 \): \( 4y = 12 \) → \( y = 3 \) (Point: \( (0, 3) \)) - When \( y = 0 \): \( x = 12 \) (Point: \( (12, 0) \)) ### Step 4: Plot the lines on a graph Plot the points obtained from the intercepts on a graph and draw the lines corresponding to each equation. ### Step 5: Determine the feasible region The feasible region is where all the constraints overlap. Since all inequalities are of the form \( \geq \), the feasible region will be above the lines. ### Step 6: Identify corner points of the feasible region Find the intersection points of the lines: 1. **Intersection of \( 5x + y = 10 \) and \( x + y = 6 \):** \[ \begin{align*} 5x + y &= 10 \\ x + y &= 6 \\ \text{Subtract the second from the first:} \\ 5x + y - (x + y) &= 10 - 6 \\ 4x &= 4 \\ x &= 1 \\ y &= 6 - 1 = 5 \\ \text{Point: } (1, 5) \end{align*} \] 2. **Intersection of \( x + y = 6 \) and \( x + 4y = 12 \):** \[ \begin{align*} x + y &= 6 \\ x + 4y &= 12 \\ \text{Subtract the first from the second:} \\ (x + 4y) - (x + y) &= 12 - 6 \\ 3y &= 6 \\ y &= 2 \\ x &= 6 - 2 = 4 \\ \text{Point: } (4, 2) \end{align*} \] 3. **Intersection of \( 5x + y = 10 \) and \( x + 4y = 12 \):** \[ \begin{align*} 5x + y &= 10 \\ x + 4y &= 12 \\ \text{Multiply the second by 5:} \\ 5x + 20y &= 60 \\ \text{Subtract the first from this:} \\ 20y - y &= 60 - 10 \\ 19y &= 50 \\ y &= \frac{50}{19} \approx 2.63 \\ x &= 12 - 4y = 12 - 4 \cdot \frac{50}{19} = \frac{28}{19} \approx 1.47 \\ \text{Point: } \left(\frac{28}{19}, \frac{50}{19}\right) \end{align*} \] ### Step 7: Evaluate the objective function at each corner point 1. At \( (0, 10) \): \[ Z = 4(0) + 5(10) = 50 \] 2. At \( (1, 5) \): \[ Z = 4(1) + 5(5) = 4 + 25 = 29 \] 3. At \( (4, 2) \): \[ Z = 4(4) + 5(2) = 16 + 10 = 26 \] 4. At \( (12, 0) \): \[ Z = 4(12) + 5(0) = 48 \] 5. At \( \left(\frac{28}{19}, \frac{50}{19}\right) \): \[ Z = 4\left(\frac{28}{19}\right) + 5\left(\frac{50}{19}\right) = \frac{112}{19} + \frac{250}{19} = \frac{362}{19} \approx 19.05 \] ### Step 8: Determine the minimum value The minimum value of \( Z \) occurs at the point \( (4, 2) \) with: \[ \text{Minimum } Z = 26 \] ### Final Answer The minimum value of \( Z \) is \( 26 \) at the point \( (4, 2) \). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II ASSIGNMENT PROBLEMS AND SEQUENCING (I. Select and write the most appropriate answer from the given alternatives for each sub question.)|12 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II ASSIGNMENT PROBLEMS AND SEQUENCING (II. Fill in the blanks)|12 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II LINEAR PROGRAMMING PROBLEMS (D. Solve the following problems)|12 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Minimize Z = 2x + 3y subject to constraints x + y ge 6 , 2x + y ge 7, x + 4y ge 8 , x ge 0 , y ge 0

Minimize Z = x + 4y subject to constraints x + 3y ge 3 , 2x + y ge 2, x ge 0 , y ge 0

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Maximize: Z = -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximise and Minimise : Z = 4x + 3y -7 subject to the constraints: x + y le 10, x + y ge 3, x le 8, y le 9, x, y ge 0

Graphically maximise Z = 9x + 10y subject to constraints : 9x + 2y ge 20, x - 2y ge 0, x + y le 9, x ge 0, y ge 0 .

Minimize z = 24x + 40y subject to constraints 6x + 8y ge 96, 7x + 12y ge 168, x ge 0 , y ge 0

Maximise Z= -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .