Home
Class 12
MATHS
If A = [(cos alpha,sin alpha),(-sin alph...

If `A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)]`, then `A^(10)` = .........

A

`[(cos 10 alpha,-sin 10 alpha),(sin 10 alpha,cos 10 alpha)]`

B

`[(cos 10 alpha,sin 10 alpha),(-sin 10 alpha,cos 10 alpha)]`

C

`[(cos 10 alpha,sin 10 alpha),(-sin 10 alpha,-cos 10 alpha)]`

D

`[(cos 10 alpha,-sin 10 alpha),(-sin 10 alpha,-cos 10 alpha)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{10} \) for the matrix \[ A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, \] we will first compute \( A^2 \) and then generalize the result to \( A^{10} \). ### Step 1: Compute \( A^2 \) To compute \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}. \] Calculating the elements of \( A^2 \): - The element at (1,1): \[ \cos \alpha \cdot \cos \alpha + \sin \alpha \cdot (-\sin \alpha) = \cos^2 \alpha - \sin^2 \alpha. \] - The element at (1,2): \[ \cos \alpha \cdot \sin \alpha + \sin \alpha \cdot \cos \alpha = 2 \cos \alpha \sin \alpha. \] - The element at (2,1): \[ -\sin \alpha \cdot \cos \alpha + \cos \alpha \cdot (-\sin \alpha) = -2 \sin \alpha \cos \alpha. \] - The element at (2,2): \[ -\sin \alpha \cdot \sin \alpha + \cos \alpha \cdot \cos \alpha = \cos^2 \alpha - \sin^2 \alpha. \] Thus, we have: \[ A^2 = \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha & 2 \cos \alpha \sin \alpha \\ -2 \sin \alpha \cos \alpha & \cos^2 \alpha - \sin^2 \alpha \end{pmatrix}. \] Using the double angle identities, we can rewrite this as: \[ A^2 = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{pmatrix}. \] ### Step 2: Generalize to \( A^n \) From the pattern observed, we can generalize: \[ A^n = \begin{pmatrix} \cos(n\alpha) & \sin(n\alpha) \\ -\sin(n\alpha) & \cos(n\alpha) \end{pmatrix}. \] ### Step 3: Compute \( A^{10} \) Now, substituting \( n = 10 \): \[ A^{10} = \begin{pmatrix} \cos(10\alpha) & \sin(10\alpha) \\ -\sin(10\alpha) & \cos(10\alpha) \end{pmatrix}. \] ### Final Answer Thus, the final result is: \[ A^{10} = \begin{pmatrix} \cos(10\alpha) & \sin(10\alpha) \\ -\sin(10\alpha) & \cos(10\alpha) \end{pmatrix}. \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

A=[[Cos alpha,sin alpha],[-Sin alpha,cos alpha]] then A^(2)

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] , then find | A |

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

If A = [ (cos alpha ,- sin alpha ),(sin alpha ,cos alpha)] , then A + A' = I then the value of alpha is :

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

If A=[{:(cos alpha, sin alpha),(-sin alpha, cos alpha):}] , then what is A"A"^(T) equal to (where A^(T) is the transpose of A) ?

If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the matrix A^(2)(alpha) is

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. Simplify cos theta[(cos theta,sin theta),(-sin theta,cos theta)]+sin t...

    Text Solution

    |

  2. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  3. If A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)], then A^(10) = ....

    Text Solution

    |

  4. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  5. If A = [(4,5),(2,5)], then |(2A)^(-1)|=....

    Text Solution

    |

  6. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  7. The value of x, y, z for the following system of equations x + y + z =...

    Text Solution

    |

  8. If A = [(3,0,0),(0,3,0),(0,0,3)], then |A||adj A| =...

    Text Solution

    |

  9. If the system of equations 6x + 2y = 3 and kx + y = 2 has a unique so...

    Text Solution

    |

  10. Let A=[1-1 1 2 1-3 1 1 1]a n d10 B=[-4 2 2-5 0alpha1 2 3]dot If B is...

    Text Solution

    |

  11. Matrix A =[(1,2,3),(1,1,5),(2,4,7)] then the value of A(31) A(3...

    Text Solution

    |

  12. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  13. IF the inverse of the matrix [(alpha , 14,-1),(2,3,1),(6,2,3)] ...

    Text Solution

    |

  14. Select and write the most appropriate answer from the given alternativ...

    Text Solution

    |

  15. A = [(cos theta,-sin theta),(-sin theta,-cos theta)] then find A^(-1).

    Text Solution

    |

  16. If A = [(a,b),(c,d)] then find the value of |A|^(-1)

    Text Solution

    |

  17. If A = [(3,1),(5,2)], and AB = BA = I, then find the matrix B.

    Text Solution

    |

  18. If A(theta) = [(cos theta,sin theta),(-sin theta,cos theta)] then prov...

    Text Solution

    |

  19. If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the o...

    Text Solution

    |

  20. If A+l=[(3,-2),(4,1)] then (A+l)(A-l) is equal to

    Text Solution

    |