Home
Class 12
MATHS
The value of x, y, z for the following s...

The value of `x, y, z` for the following system of equations `x + y + z = 6, x - y + 2z = 5, 2x + y - z = 1` are

A

`x = 1, y = 2, z = 3 `

B

`x = 2, y = 1, z = 3`

C

`x = -1, y = 2, z = 3`

D

`x = y = z = 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x + y + z = 6 \) (Equation 1) 2. \( x - y + 2z = 5 \) (Equation 2) 3. \( 2x + y - z = 1 \) (Equation 3) we will use Cramer's rule. ### Step 1: Set up the coefficient matrix and calculate the determinant \( D \) The coefficient matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix} \] Now, we calculate the determinant \( D \): \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the corresponding elements of the remaining rows. Calculating \( D \): \[ D = 1 \cdot ((-1) \cdot (-1) - 2 \cdot 1) - 1 \cdot (1 \cdot (-1) - 2 \cdot 2) + 1 \cdot (1 \cdot 1 - (-1) \cdot 2) \] \[ = 1 \cdot (1 - 2) - 1 \cdot (-1 - 4) + 1 \cdot (1 + 2) \] \[ = 1 \cdot (-1) - 1 \cdot (-5) + 1 \cdot 3 \] \[ = -1 + 5 + 3 = 7 \] ### Step 2: Calculate \( D_x \) Replace the first column of the coefficient matrix with the constants from the right-hand side of the equations: \[ D_x = \begin{vmatrix} 6 & 1 & 1 \\ 5 & -1 & 2 \\ 1 & 1 & -1 \end{vmatrix} \] Calculating \( D_x \): \[ D_x = 6 \cdot ((-1) \cdot (-1) - 2 \cdot 1) - 1 \cdot (5 \cdot (-1) - 2 \cdot 1) + 1 \cdot (5 \cdot 1 - (-1) \cdot 6) \] \[ = 6 \cdot (1 - 2) - 1 \cdot (-5 - 2) + 1 \cdot (5 + 6) \] \[ = 6 \cdot (-1) - 1 \cdot (-7) + 1 \cdot 11 \] \[ = -6 + 7 + 11 = 12 \] ### Step 3: Calculate \( D_y \) Replace the second column of the coefficient matrix with the constants: \[ D_y = \begin{vmatrix} 1 & 6 & 1 \\ 1 & 5 & 2 \\ 2 & 1 & -1 \end{vmatrix} \] Calculating \( D_y \): \[ D_y = 1 \cdot (5 \cdot (-1) - 2 \cdot 1) - 6 \cdot (1 \cdot (-1) - 2 \cdot 2) + 1 \cdot (1 \cdot 1 - 5 \cdot 2) \] \[ = 1 \cdot (-5 - 2) - 6 \cdot (-1 - 4) + 1 \cdot (1 - 10) \] \[ = 1 \cdot (-7) - 6 \cdot (-5) + 1 \cdot (-9) \] \[ = -7 + 30 - 9 = 14 \] ### Step 4: Calculate \( D_z \) Replace the third column of the coefficient matrix with the constants: \[ D_z = \begin{vmatrix} 1 & 1 & 6 \\ 1 & -1 & 5 \\ 2 & 1 & 1 \end{vmatrix} \] Calculating \( D_z \): \[ D_z = 1 \cdot ((-1) \cdot 1 - 5 \cdot 1) - 1 \cdot (1 \cdot 1 - 5 \cdot 2) + 6 \cdot (1 \cdot 1 - (-1) \cdot 2) \] \[ = 1 \cdot (-1 - 5) - 1 \cdot (1 - 10) + 6 \cdot (1 + 2) \] \[ = 1 \cdot (-6) - 1 \cdot (-9) + 6 \cdot 3 \] \[ = -6 + 9 + 18 = 21 \] ### Step 5: Calculate \( x, y, z \) Using Cramer’s rule: \[ x = \frac{D_x}{D} = \frac{12}{7}, \quad y = \frac{D_y}{D} = \frac{14}{7} = 2, \quad z = \frac{D_z}{D} = \frac{21}{7} = 3 \] Thus, the values of \( x, y, z \) are: \[ x = \frac{12}{7}, \quad y = 2, \quad z = 3 \] ### Final Answer: The values of \( x, y, z \) are \( \frac{12}{7}, 2, 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

The system of linear equations lambda x + y + z = 3 x - y - 2z = 6 -x + y + z = mu has

Use matrix to solve the following system of equations. x+y+z=6 x-y+z=2 2x+y-z=1

The values of lambda and mu such that the system of equations x + y + z = 6, 3x + 5y + 5z = 26, x + 2y + lambda z = mu has no solution, are :

Using matrices, solve the following system of equations for x,y and z. x+y-z=-1 , 3x+y-2z=3 , x-y-z=-1

Solve the following system of homogeneous equations: x+y-z=0x-2y+z=03x+6y-5z=0

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A = [(4,5),(2,5)], then |(2A)^(-1)|=....

    Text Solution

    |

  2. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  3. The value of x, y, z for the following system of equations x + y + z =...

    Text Solution

    |

  4. If A = [(3,0,0),(0,3,0),(0,0,3)], then |A||adj A| =...

    Text Solution

    |

  5. If the system of equations 6x + 2y = 3 and kx + y = 2 has a unique so...

    Text Solution

    |

  6. Let A=[1-1 1 2 1-3 1 1 1]a n d10 B=[-4 2 2-5 0alpha1 2 3]dot If B is...

    Text Solution

    |

  7. Matrix A =[(1,2,3),(1,1,5),(2,4,7)] then the value of A(31) A(3...

    Text Solution

    |

  8. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  9. IF the inverse of the matrix [(alpha , 14,-1),(2,3,1),(6,2,3)] ...

    Text Solution

    |

  10. Select and write the most appropriate answer from the given alternativ...

    Text Solution

    |

  11. A = [(cos theta,-sin theta),(-sin theta,-cos theta)] then find A^(-1).

    Text Solution

    |

  12. If A = [(a,b),(c,d)] then find the value of |A|^(-1)

    Text Solution

    |

  13. If A = [(3,1),(5,2)], and AB = BA = I, then find the matrix B.

    Text Solution

    |

  14. If A(theta) = [(cos theta,sin theta),(-sin theta,cos theta)] then prov...

    Text Solution

    |

  15. If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the o...

    Text Solution

    |

  16. If A+l=[(3,-2),(4,1)] then (A+l)(A-l) is equal to

    Text Solution

    |

  17. If A = [(2,-1,1),(-2,3,-2),(-4,4,-3)] then find A^(2)

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |

  19. If A = [(0,3,3),(-3,0,-4),(-3,4,0)] and B = [(x),(y),(z)], find the ma...

    Text Solution

    |

  20. If f(x) = x^(2) - 2x - 3 then find f(A) when A = [(1,2),(2,1)]

    Text Solution

    |