Home
Class 12
MATHS
If A = [(3,0,0),(0,3,0),(0,0,3)], then |...

If `A = [(3,0,0),(0,3,0),(0,0,3)]`, then |A||adj A| =...

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of |A| * |adj A|, where \( A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \). ### Step 1: Calculate the Determinant of Matrix A The determinant of a diagonal matrix is the product of its diagonal elements. Therefore, for matrix \( A \): \[ |A| = 3 \cdot 3 \cdot 3 = 27 \] ### Step 2: Calculate the Determinant of the Adjoint of Matrix A The determinant of the adjoint of a matrix \( A \) can be calculated using the formula: \[ |adj A| = |A|^{n-1} \] where \( n \) is the order of the matrix. Since \( A \) is a \( 3 \times 3 \) matrix, \( n = 3 \). Thus, \[ |adj A| = |A|^{3-1} = |A|^2 \] From Step 1, we already calculated \( |A| = 27 \). Therefore: \[ |adj A| = 27^2 = 729 \] ### Step 3: Calculate |A| * |adj A| Now, we can find the product: \[ |A| \cdot |adj A| = 27 \cdot 729 \] Calculating this gives: \[ 27 \cdot 729 = 19683 \] ### Final Answer Thus, the value of \( |A| \cdot |adj A| \) is: \[ \boxed{19683} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A={:[(a,0,0),(0,a,0),(0,0,a)],:}" then: "|A|*|adj.A|=

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

Knowledge Check

  • If A=[(3,0,0),(0,2,0),(0,0,)] then A is

    A
    Diagonal matrix
    B
    Scalar matrix
    C
    Nilpotent matrix
    D
    Idempotent matrix
  • If A=[[3, 0, 0], [0, 3, 0], [0, 0, 3]] , then |A||adjA|=

    A
    `3^(3)`
    B
    `3^(6)`
    C
    `3^(9)`
    D
    `3^(27)`
  • If A = [ (1,-2,2),(0,2,-3),(3,-2,4)] then A (adj A ) =

    A
    `[ (1,7,-9),(2,3,4),(-1,-1,0)]`
    B
    `[ (4,-5,3),(-3,-2,1),(0,7,9)]`
    C
    `[(8,0,0),(0,8,0),(0,0,8)]`
    D
    `[(0,-1,3),(0,4,7),(0,0,2)]`
  • Similar Questions

    Explore conceptually related problems

    If A=[[3,0,0],[0,3,0],[0,0,3]] ,then find A'

    If A(adj A) = ((7k,0,0), (0,7k,0),(0,0,7k)) then find |adjA|.

    If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], then =(|adj(adjA)|)/(2|adjA|) is equal to

    If A=[[a,0,0] , [0,a,0] , [0,0,a]] then |adj A|=

    If A is a square matrix such that A(adj A)=[(4,0,0),(0,4,0),(0,0,4)] , then (|adj (adj A)|)/(|adj A|) is equal to