Home
Class 12
MATHS
If A = [(3,1),(5,2)], and AB = BA = I, t...

If `A = [(3,1),(5,2)]`, and AB = BA = I, then find the matrix B.

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( B \) such that \( AB = BA = I \), where \( A = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \), we need to calculate the inverse of matrix \( A \). ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (3)(2) - (5)(1) = 6 - 5 = 1 \] ### Step 2: Find the Adjoint of \( A \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) The inverse of a matrix \( A \) is given by: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Since we calculated that \( \text{det}(A) = 1 \): \[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \] ### Step 4: Conclude the Result Since \( B = A^{-1} \), we have: \[ B = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \] Thus, the matrix \( B \) is: \[ \boxed{\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A =[(1,-1),(2,5)] and B=[(-2,2),(3,1)] then find the values BA+2l, where l is the identity matrix.

If A=[[3,6,-5]] and B=[[4] , [7] , [2]] then find AB and BA

If A=[{:(-3),(" "5),(" "2):}] and B=[1" "6" "-4] then verify that (AB)'=B'A'.

if A=[[1],[2],[3]] and B=[[3,1,2]] then fiind AB&BA

If A=[[0,-1],[0,2]] and B=[[3,5],[0,0]], then find A.B and B.A

if A=[{:(0),(1),(2):}]and B=[3" "2" "1], then show that : (AB)'=B'A'

If A = ({:(7, 2),(-3, 9):}), B = ({:(p, 2), (-3, 5):}) and AB = BA, then find p.

If A={:[(2,-3),(1,2)]:}andB={:[(3,2),(7,-1)]:} , find matrix C such that C=AB+A^(2)B .

If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)] , find AB and BA and show that AB!=BA

Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] (a) Find AB. (b) Is BA defined ? Justify your answer.

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. A = [(cos theta,-sin theta),(-sin theta,-cos theta)] then find A^(-1).

    Text Solution

    |

  2. If A = [(a,b),(c,d)] then find the value of |A|^(-1)

    Text Solution

    |

  3. If A = [(3,1),(5,2)], and AB = BA = I, then find the matrix B.

    Text Solution

    |

  4. If A(theta) = [(cos theta,sin theta),(-sin theta,cos theta)] then prov...

    Text Solution

    |

  5. If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the o...

    Text Solution

    |

  6. If A+l=[(3,-2),(4,1)] then (A+l)(A-l) is equal to

    Text Solution

    |

  7. If A = [(2,-1,1),(-2,3,-2),(-4,4,-3)] then find A^(2)

    Text Solution

    |

  8. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |

  9. If A = [(0,3,3),(-3,0,-4),(-3,4,0)] and B = [(x),(y),(z)], find the ma...

    Text Solution

    |

  10. If f(x) = x^(2) - 2x - 3 then find f(A) when A = [(1,2),(2,1)]

    Text Solution

    |

  11. If A = [(-1),(2),(3)],B = [(3,1,-2)], find B'A'

    Text Solution

    |

  12. If A is an invertible matrix of order 3 and |A|=5 , then find |a d ...

    Text Solution

    |

  13. If A = [(6,5),(5,6)] and B = [(11,0),(0,11)] then find A'B'

    Text Solution

    |

  14. If A = [(2,4),(1,3)] and B = [(1,1),(0,1)] then find (A^(-1)B^(-1))

    Text Solution

    |

  15. If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such tha...

    Text Solution

    |

  16. Find the matrix X such that AX = I where A = [(6,17),(1,3)]

    Text Solution

    |

  17. Find A^(-1) using adjoint method, where A = [(cos theta,sin theta),(-s...

    Text Solution

    |

  18. Find A^(-1) using column transformations : A = [(2,-3),(-1,2)]

    Text Solution

    |

  19. Find the adjoint of matrix A = [(6,5),(3,4)]

    Text Solution

    |

  20. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |