Home
Class 12
MATHS
If f(x) = x^(2) - 2x - 3 then find f(A) ...

If `f(x) = x^(2) - 2x - 3` then find f(A) when `A = [(1,2),(2,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(A) \) where \( f(x) = x^2 - 2x - 3 \) and \( A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \] To perform the multiplication, we calculate each element: - First row, first column: \( 1 \cdot 1 + 2 \cdot 2 = 1 + 4 = 5 \) - First row, second column: \( 1 \cdot 2 + 2 \cdot 1 = 2 + 2 = 4 \) - Second row, first column: \( 2 \cdot 1 + 1 \cdot 2 = 2 + 2 = 4 \) - Second row, second column: \( 2 \cdot 2 + 1 \cdot 1 = 4 + 1 = 5 \) Thus, \[ A^2 = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \] **Hint**: To multiply two matrices, use the dot product of rows and columns. 2. **Calculate \( 2A \)**: \[ 2A = 2 \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 & 2 \cdot 2 \\ 2 \cdot 2 & 2 \cdot 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} \] **Hint**: To scale a matrix, multiply each element by the scalar. 3. **Calculate \( 3I \)** where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] **Hint**: The identity matrix has 1's on the diagonal and 0's elsewhere. 4. **Substitute into the function \( f(A) \)**: \[ f(A) = A^2 - 2A - 3I \] Substituting the values we calculated: \[ f(A) = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] 5. **Perform the matrix subtraction**: - First, subtract \( 2A \) from \( A^2 \): \[ \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 5 - 2 & 4 - 4 \\ 4 - 4 & 5 - 2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] - Now subtract \( 3I \): \[ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 - 3 & 0 - 0 \\ 0 - 0 & 3 - 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] 6. **Final Result**: \[ f(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Conclusion: The final result is: \[ f(A) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^2-4x+1 then find f(A) when A=[[2,3] , [1,2]]

If f(x,y)=2x^(2)-xy+2y^(2) then find f_x at the point (1,2)

If f(x,y)=2x^(2)-xy+2y^(2) then find f_x at the point (1,2)

If 2f(x)-3f((1)/(x))=x^(2),x!=0, then find f(2)

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |

  2. If A = [(0,3,3),(-3,0,-4),(-3,4,0)] and B = [(x),(y),(z)], find the ma...

    Text Solution

    |

  3. If f(x) = x^(2) - 2x - 3 then find f(A) when A = [(1,2),(2,1)]

    Text Solution

    |

  4. If A = [(-1),(2),(3)],B = [(3,1,-2)], find B'A'

    Text Solution

    |

  5. If A is an invertible matrix of order 3 and |A|=5 , then find |a d ...

    Text Solution

    |

  6. If A = [(6,5),(5,6)] and B = [(11,0),(0,11)] then find A'B'

    Text Solution

    |

  7. If A = [(2,4),(1,3)] and B = [(1,1),(0,1)] then find (A^(-1)B^(-1))

    Text Solution

    |

  8. If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such tha...

    Text Solution

    |

  9. Find the matrix X such that AX = I where A = [(6,17),(1,3)]

    Text Solution

    |

  10. Find A^(-1) using adjoint method, where A = [(cos theta,sin theta),(-s...

    Text Solution

    |

  11. Find A^(-1) using column transformations : A = [(2,-3),(-1,2)]

    Text Solution

    |

  12. Find the adjoint of matrix A = [(6,5),(3,4)]

    Text Solution

    |

  13. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  14. If A = [(0,4,3),(1,-3,-3),(-1,4,4)], then find A^(2) and hence find A^...

    Text Solution

    |

  15. If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)], then find (AB)^(...

    Text Solution

    |

  16. If A = [(-4,-3,-3),(1,0,1),(4,4,3)], find adj (A)

    Text Solution

    |

  17. Solve the following equations by inverse method : 2x + y = 5, 3x + 5...

    Text Solution

    |

  18. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  19. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  20. v36.3

    Text Solution

    |