Home
Class 12
MATHS
If A = [(2,4),(1,3)] and B = [(1,1),(0,1...

If `A = [(2,4),(1,3)] and B = [(1,1),(0,1)]` then find `(A^(-1)B^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{-1}B^{-1} \) where \( A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \) and \( B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), we can use the property that \( A^{-1}B^{-1} = (BA)^{-1} \). ### Step-by-Step Solution: 1. **Calculate the product \( BA \)**: \[ B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \] To find \( BA \), we multiply the matrices: \[ BA = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \] - For the first row, first column: \[ 1 \cdot 2 + 1 \cdot 1 = 2 + 1 = 3 \] - For the first row, second column: \[ 1 \cdot 4 + 1 \cdot 3 = 4 + 3 = 7 \] - For the second row, first column: \[ 0 \cdot 2 + 1 \cdot 1 = 0 + 1 = 1 \] - For the second row, second column: \[ 0 \cdot 4 + 1 \cdot 3 = 0 + 3 = 3 \] Therefore, \[ BA = \begin{pmatrix} 3 & 7 \\ 1 & 3 \end{pmatrix} \] 2. **Calculate the determinant of \( BA \)**: The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). \[ \text{det}(BA) = (3)(3) - (7)(1) = 9 - 7 = 2 \] 3. **Find the adjoint of \( BA \)**: The adjoint of \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is \( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \). \[ \text{adj}(BA) = \begin{pmatrix} 3 & -7 \\ -1 & 3 \end{pmatrix} \] 4. **Calculate the inverse of \( BA \)**: The inverse of a matrix \( M \) is given by \( M^{-1} = \frac{1}{\text{det}(M)} \text{adj}(M) \). \[ (BA)^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -7 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -\frac{7}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix} \] 5. **Conclusion**: Therefore, \[ A^{-1}B^{-1} = (BA)^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{7}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

If A'=[(-2,3),(1,3)] and B=[(-1,0),(1,2)], find [A+2B]'.

If A= [(3,1),(4,0)] and B=[(4,0),(2,5)] then verify that (AB)^(-1)= B^(-1) A^(-1)

If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the order of AB.

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(1,3),(4,2)],B=[(4,1),(-6,3)] and C=[(1,3),(0,-5)] , then find A+B+C ?

If A=[[1,-1],[3,0]] and A-B=[[3,1],[1,4]] , then find B

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A is an invertible matrix of order 3 and |A|=5 , then find |a d ...

    Text Solution

    |

  2. If A = [(6,5),(5,6)] and B = [(11,0),(0,11)] then find A'B'

    Text Solution

    |

  3. If A = [(2,4),(1,3)] and B = [(1,1),(0,1)] then find (A^(-1)B^(-1))

    Text Solution

    |

  4. If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such tha...

    Text Solution

    |

  5. Find the matrix X such that AX = I where A = [(6,17),(1,3)]

    Text Solution

    |

  6. Find A^(-1) using adjoint method, where A = [(cos theta,sin theta),(-s...

    Text Solution

    |

  7. Find A^(-1) using column transformations : A = [(2,-3),(-1,2)]

    Text Solution

    |

  8. Find the adjoint of matrix A = [(6,5),(3,4)]

    Text Solution

    |

  9. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  10. If A = [(0,4,3),(1,-3,-3),(-1,4,4)], then find A^(2) and hence find A^...

    Text Solution

    |

  11. If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)], then find (AB)^(...

    Text Solution

    |

  12. If A = [(-4,-3,-3),(1,0,1),(4,4,3)], find adj (A)

    Text Solution

    |

  13. Solve the following equations by inverse method : 2x + y = 5, 3x + 5...

    Text Solution

    |

  14. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  15. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  16. v36.3

    Text Solution

    |

  17. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  18. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  19. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  20. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |