Home
Class 12
MATHS
Find A^(-1) using column transformations...

Find `A^(-1)` using column transformations :
`A = [(2,-3),(-1,2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) using column transformations, we start with the matrix \( A \) and the identity matrix \( I \). Given: \[ A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \] and the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] We will perform column operations on \( A \) to transform it into \( I \) while applying the same operations to \( I \). ### Step 1: Set up the augmented matrix We write the augmented matrix \([A | I]\): \[ \begin{pmatrix} 2 & -3 & | & 1 & 0 \\ -1 & 2 & | & 0 & 1 \end{pmatrix} \] ### Step 2: Make the first column's leading entry 1 To make the leading entry of the first column 1, we can divide the first row by 2: \[ R_1 \rightarrow \frac{1}{2} R_1 \] This gives us: \[ \begin{pmatrix} 1 & -\frac{3}{2} & | & \frac{1}{2} & 0 \\ -1 & 2 & | & 0 & 1 \end{pmatrix} \] ### Step 3: Eliminate the entry below the leading 1 Next, we want to eliminate the entry below the leading 1 in the first column. We can do this by adding the first row to the second row: \[ R_2 \rightarrow R_2 + R_1 \] This results in: \[ \begin{pmatrix} 1 & -\frac{3}{2} & | & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & | & \frac{1}{2} & 1 \end{pmatrix} \] ### Step 4: Make the second column's leading entry 1 Now, we need to make the leading entry of the second column 1 by multiplying the second row by 2: \[ R_2 \rightarrow 2R_2 \] This gives us: \[ \begin{pmatrix} 1 & -\frac{3}{2} & | & \frac{1}{2} & 0 \\ 0 & 1 & | & 1 & 2 \end{pmatrix} \] ### Step 5: Eliminate the entry above the leading 1 in the second column Now we need to eliminate the entry above the leading 1 in the second column. We can do this by adding \(\frac{3}{2}\) times the second row to the first row: \[ R_1 \rightarrow R_1 + \frac{3}{2} R_2 \] This results in: \[ \begin{pmatrix} 1 & 0 & | & 2 & 3 \\ 0 & 1 & | & 1 & 2 \end{pmatrix} \] ### Step 6: Write the inverse Now, the left side is the identity matrix, and the right side gives us the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(2,-3),(-1,2)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(3,-1),(-4,2)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(6,-3),(-2,1)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(-4,3),(-5,4)]

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. Find the matrix X such that AX = I where A = [(6,17),(1,3)]

    Text Solution

    |

  2. Find A^(-1) using adjoint method, where A = [(cos theta,sin theta),(-s...

    Text Solution

    |

  3. Find A^(-1) using column transformations : A = [(2,-3),(-1,2)]

    Text Solution

    |

  4. Find the adjoint of matrix A = [(6,5),(3,4)]

    Text Solution

    |

  5. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  6. If A = [(0,4,3),(1,-3,-3),(-1,4,4)], then find A^(2) and hence find A^...

    Text Solution

    |

  7. If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)], then find (AB)^(...

    Text Solution

    |

  8. If A = [(-4,-3,-3),(1,0,1),(4,4,3)], find adj (A)

    Text Solution

    |

  9. Solve the following equations by inverse method : 2x + y = 5, 3x + 5...

    Text Solution

    |

  10. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  11. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  12. v36.3

    Text Solution

    |

  13. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  14. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  15. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  16. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  17. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  18. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  19. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  20. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |