Home
Class 12
MATHS
If A = [(0,4,3),(1,-3,-3),(-1,4,4)], the...

If `A = [(0,4,3),(1,-3,-3),(-1,4,4)]`, then find `A^(2)` and hence find `A^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) and then \( A^{-1} \) for the matrix \[ A = \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \] we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \times \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \] #### Step 1.1: Calculate the first row of \( A^2 \) - First element: \( 0 \times 0 + 4 \times 1 + 3 \times (-1) = 0 + 4 - 3 = 1 \) - Second element: \( 0 \times 4 + 4 \times (-3) + 3 \times 4 = 0 - 12 + 12 = 0 \) - Third element: \( 0 \times 3 + 4 \times (-3) + 3 \times 4 = 0 - 12 + 12 = 0 \) So, the first row of \( A^2 \) is \( (1, 0, 0) \). #### Step 1.2: Calculate the second row of \( A^2 \) - First element: \( 1 \times 0 + (-3) \times 1 + (-3) \times (-1) = 0 - 3 + 3 = 0 \) - Second element: \( 1 \times 4 + (-3) \times (-3) + (-3) \times 4 = 4 + 9 - 12 = 1 \) - Third element: \( 1 \times 3 + (-3) \times (-3) + (-3) \times 4 = 3 + 9 - 12 = 0 \) So, the second row of \( A^2 \) is \( (0, 1, 0) \). #### Step 1.3: Calculate the third row of \( A^2 \) - First element: \( -1 \times 0 + 4 \times 1 + 4 \times (-1) = 0 + 4 - 4 = 0 \) - Second element: \( -1 \times 4 + 4 \times (-3) + 4 \times 4 = -4 - 12 + 16 = 0 \) - Third element: \( -1 \times 3 + 4 \times (-3) + 4 \times 4 = -3 - 12 + 16 = 1 \) So, the third row of \( A^2 \) is \( (0, 0, 1) \). ### Conclusion for Step 1 Putting it all together, we have: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \] ### Step 2: Find \( A^{-1} \) Since \( A^2 = I \), we can conclude that: \[ A \times A = I \implies A^{-1} = A \] Thus, we have: \[ A^{-1} = \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \] ### Final Answer \[ A^2 = I \quad \text{and} \quad A^{-1} = A = \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A = ({:(9, -7), (-4, 3):}) " and B"=({:(-3, -7),(-4, -9):}) , then find AB and hence find A^(-1) .

If A = [(-4,-3,-3),(1,0,1),(4,4,3)] , find adj (A)

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .

If A= [[3,-3,4],[2,-3,4],[0,-1,1]] then find A^(3)

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

" If matrix "A=[[1,1,3],[1,3,-3],[-2,-4,-4]]" then find "A^(-1)

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. Find the adjoint of matrix A = [(6,5),(3,4)]

    Text Solution

    |

  2. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  3. If A = [(0,4,3),(1,-3,-3),(-1,4,4)], then find A^(2) and hence find A^...

    Text Solution

    |

  4. If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)], then find (AB)^(...

    Text Solution

    |

  5. If A = [(-4,-3,-3),(1,0,1),(4,4,3)], find adj (A)

    Text Solution

    |

  6. Solve the following equations by inverse method : 2x + y = 5, 3x + 5...

    Text Solution

    |

  7. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  8. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  9. v36.3

    Text Solution

    |

  10. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  11. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  12. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  13. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  14. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  15. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  16. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  17. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |

  18. If three numbers are added , their sum is 2 . If two times the seco...

    Text Solution

    |

  19. Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using...

    Text Solution

    |

  20. If A = [(x,0,0),(0,y,0),(0,0,z)] is a non-singular matrix, then find A...

    Text Solution

    |