Home
Class 12
MATHS
If A = [(0,1),(2,3),(1,-1)]and B = [(1,2...

If `A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)]`, then find `(AB)^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \((AB)^{-1}\) where \(A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix}\) and \(B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix}\), we will follow these steps: ### Step 1: Multiply Matrices A and B We first need to compute the product \(AB\). \[ AB = A \cdot B = \begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} \] To multiply the matrices, we calculate each element of the resulting matrix: - First row, first column: \[ 0 \cdot 1 + 1 \cdot 2 = 0 + 2 = 2 \] - First row, second column: \[ 0 \cdot 2 + 1 \cdot 1 = 0 + 1 = 1 \] - First row, third column: \[ 0 \cdot 1 + 1 \cdot 0 = 0 + 0 = 0 \] - Second row, first column: \[ 2 \cdot 1 + 3 \cdot 2 = 2 + 6 = 8 \] - Second row, second column: \[ 2 \cdot 2 + 3 \cdot 1 = 4 + 3 = 7 \] - Second row, third column: \[ 2 \cdot 1 + 3 \cdot 0 = 2 + 0 = 2 \] - Third row, first column: \[ 1 \cdot 1 + (-1) \cdot 2 = 1 - 2 = -1 \] - Third row, second column: \[ 1 \cdot 2 + (-1) \cdot 1 = 2 - 1 = 1 \] - Third row, third column: \[ 1 \cdot 1 + (-1) \cdot 0 = 1 + 0 = 1 \] Thus, the product \(AB\) is: \[ AB = \begin{pmatrix} 2 & 1 & 0 \\ 8 & 7 & 2 \\ -1 & 1 & 1 \end{pmatrix} \] ### Step 2: Calculate the Determinant of AB Next, we need to find the determinant of the matrix \(AB\). For a \(3 \times 3\) matrix \(\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}\), the determinant is calculated as: \[ \text{det}(AB) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the values from \(AB\): \[ \text{det}(AB) = 2(7 \cdot 1 - 2 \cdot 1) - 1(8 \cdot 1 - 2 \cdot (-1)) + 0(8 \cdot 1 - 7 \cdot (-1)) \] Calculating each term: - First term: \[ 2(7 - 2) = 2 \cdot 5 = 10 \] - Second term: \[ -1(8 + 2) = -1 \cdot 10 = -10 \] - Third term: \[ 0 \cdot \text{(anything)} = 0 \] Thus, the determinant is: \[ \text{det}(AB) = 10 - 10 + 0 = 0 \] ### Step 3: Determine if the Inverse Exists Since the determinant of \(AB\) is 0, the inverse \((AB)^{-1}\) does not exist. ### Final Answer \((AB)^{-1}\) does not exist.
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A = [(2,0,1),(-1,1,5)] and B = [(-1,1,0),(0,1,-2)] then find AB'

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

If A = [(2,4),(1,3)] and B = [(1,1),(0,1)] then find (A^(-1)B^(-1))

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the order of AB.

If A = [(2,3),(1,2)], B = [(1,0),(3,1)] , find AB and (AB)^(-1)

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be

If A = [(1,0,-4),(0,-1,2),(-1,2,1)] and B= [(5,8,4),(2,3,2),(1,2,1)] then find AB .

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  2. If A = [(0,4,3),(1,-3,-3),(-1,4,4)], then find A^(2) and hence find A^...

    Text Solution

    |

  3. If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)], then find (AB)^(...

    Text Solution

    |

  4. If A = [(-4,-3,-3),(1,0,1),(4,4,3)], find adj (A)

    Text Solution

    |

  5. Solve the following equations by inverse method : 2x + y = 5, 3x + 5...

    Text Solution

    |

  6. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  7. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  8. v36.3

    Text Solution

    |

  9. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  10. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  11. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  12. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  13. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  14. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  15. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  16. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |

  17. If three numbers are added , their sum is 2 . If two times the seco...

    Text Solution

    |

  18. Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using...

    Text Solution

    |

  19. If A = [(x,0,0),(0,y,0),(0,0,z)] is a non-singular matrix, then find A...

    Text Solution

    |

  20. Find the inverse of A =[[costheta,-sintheta,0],[sintheta,costheta,0],[...

    Text Solution

    |