Home
Class 12
MATHS
If A = [(-4,-3,-3),(1,0,1),(4,4,3)], fin...

If `A = [(-4,-3,-3),(1,0,1),(4,4,3)]`, find adj (A)

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \), we need to calculate the cofactors of each element of the matrix and then take the transpose of the cofactor matrix. ### Step 1: Calculate the Cofactors The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot \text{det}(M_{ij}) \] where \( M_{ij} \) is the minor matrix obtained by deleting the \( i \)-th row and \( j \)-th column from \( A \). #### Calculate \( C_{11} \) To find \( C_{11} \): - Remove the first row and first column: \[ M_{11} = \begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{11}) = (0)(3) - (1)(4) = -4 \] - Therefore, \[ C_{11} = (-1)^{1+1} \cdot (-4) = -4 \] #### Calculate \( C_{12} \) To find \( C_{12} \): - Remove the first row and second column: \[ M_{12} = \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{12}) = (1)(3) - (1)(4) = 3 - 4 = -1 \] - Therefore, \[ C_{12} = (-1)^{1+2} \cdot (-1) = 1 \] #### Calculate \( C_{13} \) To find \( C_{13} \): - Remove the first row and third column: \[ M_{13} = \begin{pmatrix} 1 & 0 \\ 4 & 4 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{13}) = (1)(4) - (0)(4) = 4 \] - Therefore, \[ C_{13} = (-1)^{1+3} \cdot 4 = 4 \] #### Calculate \( C_{21} \) To find \( C_{21} \): - Remove the second row and first column: \[ M_{21} = \begin{pmatrix} -3 & -3 \\ 4 & 3 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{21}) = (-3)(3) - (-3)(4) = -9 + 12 = 3 \] - Therefore, \[ C_{21} = (-1)^{2+1} \cdot 3 = -3 \] #### Calculate \( C_{22} \) To find \( C_{22} \): - Remove the second row and second column: \[ M_{22} = \begin{pmatrix} -4 & -3 \\ 4 & 3 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{22}) = (-4)(3) - (-3)(4) = -12 + 12 = 0 \] - Therefore, \[ C_{22} = (-1)^{2+2} \cdot 0 = 0 \] #### Calculate \( C_{23} \) To find \( C_{23} \): - Remove the second row and third column: \[ M_{23} = \begin{pmatrix} -4 & -3 \\ 4 & 4 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{23}) = (-4)(4) - (-3)(4) = -16 + 12 = -4 \] - Therefore, \[ C_{23} = (-1)^{2+3} \cdot (-4) = 4 \] #### Calculate \( C_{31} \) To find \( C_{31} \): - Remove the third row and first column: \[ M_{31} = \begin{pmatrix} -3 & -3 \\ 0 & 1 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{31}) = (-3)(1) - (-3)(0) = -3 \] - Therefore, \[ C_{31} = (-1)^{3+1} \cdot (-3) = -3 \] #### Calculate \( C_{32} \) To find \( C_{32} \): - Remove the third row and second column: \[ M_{32} = \begin{pmatrix} -4 & -3 \\ 1 & 1 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{32}) = (-4)(1) - (-3)(1) = -4 + 3 = -1 \] - Therefore, \[ C_{32} = (-1)^{3+2} \cdot (-1) = 1 \] #### Calculate \( C_{33} \) To find \( C_{33} \): - Remove the third row and third column: \[ M_{33} = \begin{pmatrix} -4 & -3 \\ 1 & 0 \end{pmatrix} \] - Calculate the determinant: \[ \text{det}(M_{33}) = (-4)(0) - (-3)(1) = 0 + 3 = 3 \] - Therefore, \[ C_{33} = (-1)^{3+3} \cdot 3 = 3 \] ### Step 2: Form the Cofactor Matrix Now we can form the cofactor matrix \( C \): \[ C = \begin{pmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \] ### Final Result Thus, the adjoint of matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. If A=[(-4,-3,-3),(1,0,1),(4,4,3)] ,show that adj A=A.

If B_(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B_(n)=adj(B_(n-1), AA n in N and I is an identity matrix of order 3, then B_(1)+B_(3)+B_(5)+B_(7)+B_(9) is equal to

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[{:(1,2,3),(2,3,2),(3,3,4):}] , find adj.A

If A = [(0,4,3),(1,-3,-3),(-1,4,4)] , then find A^(2) and hence find A^(-1)

If A = [{:(1,1,2),(1,3,4),(1,-1,3):}] , B = adj A and C = 3A then (|adjB|)/(|C |) is equal to

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A = [(0,4,3),(1,-3,-3),(-1,4,4)], then find A^(2) and hence find A^...

    Text Solution

    |

  2. If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)], then find (AB)^(...

    Text Solution

    |

  3. If A = [(-4,-3,-3),(1,0,1),(4,4,3)], find adj (A)

    Text Solution

    |

  4. Solve the following equations by inverse method : 2x + y = 5, 3x + 5...

    Text Solution

    |

  5. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  6. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  7. v36.3

    Text Solution

    |

  8. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  9. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  10. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  11. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  12. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  13. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  14. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  15. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |

  16. If three numbers are added , their sum is 2 . If two times the seco...

    Text Solution

    |

  17. Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using...

    Text Solution

    |

  18. If A = [(x,0,0),(0,y,0),(0,0,z)] is a non-singular matrix, then find A...

    Text Solution

    |

  19. Find the inverse of A =[[costheta,-sintheta,0],[sintheta,costheta,0],[...

    Text Solution

    |

  20. If A = [(1,1),(1,2)], B = [(4,1),(3,1)], and C = [(24,7),(31,9)], then...

    Text Solution

    |