Home
Class 12
MATHS
Find the adjoint of matrix A = [(2,0,-1)...

Find the adjoint of matrix `A = [(2,0,-1),(3,1,2),(-1,1,2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} 2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Minors The first step in finding the adjoint is to calculate the minors of each element of the matrix. 1. **Minor \( M_{11} \)**: Remove the first row and first column: \[ M_{11} = \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = (1)(2) - (2)(1) = 2 - 2 = 0 \] 2. **Minor \( M_{12} \)**: Remove the first row and second column: \[ M_{12} = \begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix} = (3)(2) - (2)(-1) = 6 + 2 = 8 \] 3. **Minor \( M_{13} \)**: Remove the first row and third column: \[ M_{13} = \begin{vmatrix} 3 & 1 \\ -1 & 1 \end{vmatrix} = (3)(1) - (1)(-1) = 3 + 1 = 4 \] 4. **Minor \( M_{21} \)**: Remove the second row and first column: \[ M_{21} = \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix} = (0)(2) - (-1)(1) = 0 + 1 = 1 \] 5. **Minor \( M_{22} \)**: Remove the second row and second column: \[ M_{22} = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = (2)(2) - (-1)(-1) = 4 - 1 = 3 \] 6. **Minor \( M_{23} \)**: Remove the second row and third column: \[ M_{23} = \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = (2)(1) - (0)(-1) = 2 - 0 = 2 \] 7. **Minor \( M_{31} \)**: Remove the third row and first column: \[ M_{31} = \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix} = (0)(2) - (-1)(1) = 0 + 1 = 1 \] 8. **Minor \( M_{32} \)**: Remove the third row and second column: \[ M_{32} = \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = (2)(2) - (-1)(3) = 4 + 3 = 7 \] 9. **Minor \( M_{33} \)**: Remove the third row and third column: \[ M_{33} = \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} = (2)(1) - (0)(3) = 2 - 0 = 2 \] ### Step 2: Calculate the Cofactors Next, we compute the cofactors by applying the sign changes based on the position of the elements: \[ C_{ij} = (-1)^{i+j} M_{ij} \] 1. **Cofactor \( C_{11} \)**: \( C_{11} = M_{11} = 0 \) 2. **Cofactor \( C_{12} \)**: \( C_{12} = -M_{12} = -8 \) 3. **Cofactor \( C_{13} \)**: \( C_{13} = M_{13} = 4 \) 4. **Cofactor \( C_{21} \)**: \( C_{21} = -M_{21} = -1 \) 5. **Cofactor \( C_{22} \)**: \( C_{22} = M_{22} = 3 \) 6. **Cofactor \( C_{23} \)**: \( C_{23} = -M_{23} = -2 \) 7. **Cofactor \( C_{31} \)**: \( C_{31} = M_{31} = 1 \) 8. **Cofactor \( C_{32} \)**: \( C_{32} = -M_{32} = -7 \) 9. **Cofactor \( C_{33} \)**: \( C_{33} = M_{33} = 2 \) ### Step 3: Form the Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 0 & -8 & 4 \\ -1 & 3 & -2 \\ 1 & -7 & 2 \end{pmatrix} \] ### Step 4: Transpose the Cofactor Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} 0 & -1 & 1 \\ -8 & 3 & -7 \\ 4 & -2 & 2 \end{pmatrix} \] ### Final Answer Thus, the adjoint of the matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 0 & -1 & 1 \\ -8 & 3 & -7 \\ 4 & -2 & 2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

Find the adjoint of the matrix: [(2,-1),(4,3)]

Find the adjoint of matrix A=[[2,-3],[4,1]]

Find the adjoint of the matrix: [(2,-4),(-1,2)]

Find the adjoint of matrix A=[[5,-1],[2,7]]

Find the adjoint of the matrix: [(1,2),(3,4)]

Find the adjoint of matrix [{:(1,2),(3,7):}]

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

The adjoint of a matrix A=[(3,1,2),(4,5,-1),(3,2,-1)] is

Find the adjoint of the matrix A=[[2,3],[1,4]] .

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  2. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  3. v36.3

    Text Solution

    |

  4. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  5. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  6. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  7. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  8. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  9. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  10. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  11. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |

  12. If three numbers are added , their sum is 2 . If two times the seco...

    Text Solution

    |

  13. Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using...

    Text Solution

    |

  14. If A = [(x,0,0),(0,y,0),(0,0,z)] is a non-singular matrix, then find A...

    Text Solution

    |

  15. Find the inverse of A =[[costheta,-sintheta,0],[sintheta,costheta,0],[...

    Text Solution

    |

  16. If A = [(1,1),(1,2)], B = [(4,1),(3,1)], and C = [(24,7),(31,9)], then...

    Text Solution

    |

  17. If A = {:((1,-1,2),(3,0,-2),(1,0,3)):}, verify that A (adj A) = |A|* I...

    Text Solution

    |

  18. If A = [(2,3),(1,2)], B = [(1,0),(3,1)], find AB and (AB)^(-1)

    Text Solution

    |

  19. Solve the following system of equations by using matrix inversion meth...

    Text Solution

    |

  20. The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is Rs. ...

    Text Solution

    |