Home
Class 12
MATHS
If A = [(1,0,1),(0,2,3),(1,2,1)]and B = ...

If `A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)]`, then find the matrix X such that XA = B

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( X \) such that \( XA = B \), we can use the formula: \[ X = BA^{-1} \] where \( A^{-1} \) is the inverse of matrix \( A \). We will follow these steps: ### Step 1: Calculate the Determinant of Matrix \( A \) Given: \[ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \] To find the determinant of \( A \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = 0, c = 1 \) - \( d = 0, e = 2, f = 3 \) - \( g = 1, h = 2, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 1(2 \cdot 1 - 3 \cdot 2) - 0 + 1(0 \cdot 2 - 2 \cdot 1) \] \[ = 1(2 - 6) + 1(0 - 2) \] \[ = 1(-4) + 1(-2) = -4 - 2 = -6 \] ### Step 2: Calculate the Inverse of Matrix \( A \) The inverse of a 3x3 matrix can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] First, we need to find the adjugate of \( A \). The adjugate is the transpose of the cofactor matrix. #### Finding the Cofactors 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} = (2)(1) - (3)(2) = 2 - 6 = -4 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} = -((0)(1) - (3)(1)) = -(-3) = 3 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} = (0)(2) - (2)(1) = 0 - 2 = -2 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = -((1)(1) - (1)(1)) = -0 = 0 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = (1)(1) - (1)(1) = 0 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = -((1)(2) - (0)(1)) = -2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{pmatrix} 0 & 3 \\ 2 & 3 \end{pmatrix} = (0)(3) - (3)(2) = 0 - 6 = -6 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix} = -((1)(3) - (1)(0)) = -3 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = (1)(2) - (0)(0) = 2 \] Now, we can construct the cofactor matrix: \[ \text{Cofactor}(A) = \begin{pmatrix} -4 & 3 & -2 \\ 0 & 0 & -2 \\ -6 & -3 & 2 \end{pmatrix} \] Taking the transpose gives us the adjugate: \[ \text{adj}(A) = \begin{pmatrix} -4 & 0 & -6 \\ 3 & 0 & -3 \\ -2 & -2 & 2 \end{pmatrix} \] Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{-6} \begin{pmatrix} -4 & 0 & -6 \\ 3 & 0 & -3 \\ -2 & -2 & 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & 0 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \] ### Step 3: Calculate \( X \) Now we can compute \( X \): \[ X = BA^{-1} \] Given: \[ B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{pmatrix} \] Now we will multiply \( B \) by \( A^{-1} \): \[ X = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & 0 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \] Calculating each element of \( X \): 1. First row: - \( X_{11} = 1 \cdot \frac{2}{3} + 2 \cdot -\frac{1}{2} + 3 \cdot \frac{1}{3} = \frac{2}{3} - 1 + 1 = \frac{2}{3} \) - \( X_{12} = 1 \cdot 0 + 2 \cdot 0 + 3 \cdot \frac{1}{3} = 1 \) - \( X_{13} = 1 \cdot 1 + 2 \cdot \frac{1}{2} + 3 \cdot -\frac{1}{3} = 1 + 1 - 1 = 1 \) 2. Second row: - \( X_{21} = 1 \cdot \frac{2}{3} + 1 \cdot -\frac{1}{2} + 5 \cdot \frac{1}{3} = \frac{2}{3} - \frac{1}{2} + \frac{5}{3} = \frac{2 + 5 - 3}{6} = \frac{4}{6} = \frac{2}{3} \) - \( X_{22} = 1 \cdot 0 + 1 \cdot 0 + 5 \cdot \frac{1}{3} = \frac{5}{3} \) - \( X_{23} = 1 \cdot 1 + 1 \cdot \frac{1}{2} + 5 \cdot -\frac{1}{3} = 1 + \frac{1}{2} - \frac{5}{3} = \frac{3 + 1 - 5}{6} = -\frac{1}{6} \) 3. Third row: - \( X_{31} = 2 \cdot \frac{2}{3} + 4 \cdot -\frac{1}{2} + 7 \cdot \frac{1}{3} = \frac{4}{3} - 2 + \frac{7}{3} = \frac{4 + 7 - 6}{3} = \frac{5}{3} \) - \( X_{32} = 2 \cdot 0 + 4 \cdot 0 + 7 \cdot \frac{1}{3} = \frac{7}{3} \) - \( X_{33} = 2 \cdot 1 + 4 \cdot \frac{1}{2} + 7 \cdot -\frac{1}{3} = 2 + 2 - \frac{7}{3} = \frac{6 + 6 - 7}{3} = \frac{5}{3} \) So, we have: \[ X = \begin{pmatrix} \frac{2}{3} & 1 & 1 \\ \frac{2}{3} & \frac{5}{3} & -\frac{1}{6} \\ \frac{5}{3} & \frac{7}{3} & \frac{5}{3} \end{pmatrix} \] ### Final Answer The matrix \( X \) is: \[ X = \begin{pmatrix} \frac{2}{3} & 1 & 1 \\ \frac{2}{3} & \frac{5}{3} & -\frac{1}{6} \\ \frac{5}{3} & \frac{7}{3} & \frac{5}{3} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0),(3,-1),(-5,2)] and B=[(1,-2),(-2,2),(1,1)] , then find the matrix 'X' such that 3A + X = 5B.

Given A=[(1,2,-3),(5,0,2),(1,-1,1)] and b=[(3,-1,2),(4,2,5),(2,0,3)] , find the matrix C such that A+C=B .

If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such that A^(-1) X = B

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

A={:[(1,2),(3,4),(5,6)]:},B={:[(0,1),(-1,2),(-2,1)]:} , then find matrix X such that 2A +3X=5B.

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  2. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  3. v36.3

    Text Solution

    |

  4. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  5. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  6. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  7. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  8. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  9. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  10. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  11. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |

  12. If three numbers are added , their sum is 2 . If two times the seco...

    Text Solution

    |

  13. Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using...

    Text Solution

    |

  14. If A = [(x,0,0),(0,y,0),(0,0,z)] is a non-singular matrix, then find A...

    Text Solution

    |

  15. Find the inverse of A =[[costheta,-sintheta,0],[sintheta,costheta,0],[...

    Text Solution

    |

  16. If A = [(1,1),(1,2)], B = [(4,1),(3,1)], and C = [(24,7),(31,9)], then...

    Text Solution

    |

  17. If A = {:((1,-1,2),(3,0,-2),(1,0,3)):}, verify that A (adj A) = |A|* I...

    Text Solution

    |

  18. If A = [(2,3),(1,2)], B = [(1,0),(3,1)], find AB and (AB)^(-1)

    Text Solution

    |

  19. Solve the following system of equations by using matrix inversion meth...

    Text Solution

    |

  20. The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is Rs. ...

    Text Solution

    |