Home
Class 12
MATHS
Solve the following system of equations ...

Solve the following system of equations by using matrix inversion method.
`x + y = 1, y + z = (5)/(3) and z + x = (4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix inversion method, we follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( x + y = 1 \) 2. \( y + z = \frac{5}{3} \) 3. \( z + x = \frac{4}{3} \) We can express this in matrix form \( AX = B \), where: \[ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ \frac{5}{3} \\ \frac{4}{3} \end{bmatrix} \] ### Step 2: Calculate the determinant of matrix A To find the inverse of matrix \( A \), we first need to calculate its determinant. \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - 0 \cdot 1) - 1 \cdot (0 \cdot 1 - 1 \cdot 1) + 0 \cdot (0 \cdot 0 - 1 \cdot 1) \] \[ = 1 \cdot 1 - 1 \cdot (-1) + 0 = 1 + 1 = 2 \] ### Step 3: Find the inverse of matrix A Since \( \text{det}(A) \neq 0 \), the inverse exists. The formula for the inverse of a matrix is: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] To find the adjugate of \( A \), we first calculate the cofactors and then take the transpose. #### Cofactors of A: - \( C_{11} = 1 \) - \( C_{12} = -1 \) - \( C_{13} = 1 \) - \( C_{21} = -1 \) - \( C_{22} = 1 \) - \( C_{23} = -1 \) - \( C_{31} = 1 \) - \( C_{32} = -1 \) - \( C_{33} = 1 \) Thus, the cofactor matrix is: \[ \text{Cof}(A) = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \] Taking the transpose gives us the adjugate: \[ \text{adj}(A) = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \] Now, we can find the inverse: \[ A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \] ### Step 4: Multiply \( A^{-1} \) by \( B \) Now we can find \( X \): \[ X = A^{-1}B = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{5}{3} \\ \frac{4}{3} \end{bmatrix} \] Calculating the multiplication: 1. First row: \[ \frac{1}{2} \cdot 1 - \frac{1}{2} \cdot \frac{5}{3} + \frac{1}{2} \cdot \frac{4}{3} = \frac{1}{2} - \frac{5}{6} + \frac{2}{3} = \frac{1}{2} - \frac{5}{6} + \frac{4}{6} = \frac{1}{2} - \frac{1}{6} = \frac{3}{6} = \frac{1}{3} \] 2. Second row: \[ -\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{5}{3} - \frac{1}{2} \cdot \frac{4}{3} = -\frac{1}{2} + \frac{5}{6} - \frac{2}{3} = -\frac{1}{2} + \frac{5}{6} - \frac{4}{6} = -\frac{1}{2} + \frac{1}{6} = -\frac{3}{6} + \frac{1}{6} = -\frac{2}{6} = -\frac{1}{3} \] 3. Third row: \[ \frac{1}{2} \cdot 1 - \frac{1}{2} \cdot \frac{5}{3} + \frac{1}{2} \cdot \frac{4}{3} = \frac{1}{2} - \frac{5}{6} + \frac{2}{3} = \frac{1}{2} - \frac{5}{6} + \frac{4}{6} = \frac{1}{2} - \frac{1}{6} = \frac{3}{6} = \frac{1}{3} \] Thus, we have: \[ X = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \] ### Final Result The solution to the system of equations is: - \( x = \frac{1}{3} \) - \( y = \frac{2}{3} \) - \( z = 1 \)
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations using matrix inversion method: 5x-3y = -13, 2x+ 5y = 1.

Solve the following system of equations by matrix method : 3x-4y=5 and 4x+2y=3

Solve the following system of equations by matrix method: 5x+2y=3,\ \ 3x+2y=5

Solve the following system of equations by matrix method: 3x+7y=4,\ \ x+2y=-1

Solve the following system of equations by matrix method: 3x+y=7,\ \ 5x+3y=12

Solve the following equations by using Matrix inversion method. 2x-y+3z=9,x+y+z=6,x-y+z=2 .

Solve the following system of equations by matrix method: 3x+4y-5=0,\ \ x-y+3=0

Solve the following system of equations,using matrix method.x+2y+z=7,x+3z=11,2x-3y=1

Solve the following system of equations by matrix method: x+y-z=3,2x+3y+z=10,3x-y-7z=1

Solve the following system of equations by matrix method: x+y+z=3,\ \ 2x-y+z=-1,\ \ 2x+y-3z=-9

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-MATRICES
  1. If A=[{:(1," 2",-1),(3,-2," 5"):}] , then R(1) harr R(2) and C(1) ra...

    Text Solution

    |

  2. Three chairs and two tables costs Rs. 1850. Five chairs and three tabl...

    Text Solution

    |

  3. v36.3

    Text Solution

    |

  4. Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

    Text Solution

    |

  5. Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2...

    Text Solution

    |

  6. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  7. Transform [(1,2,4),(3,-1,5),(2,4,6)] into an upper triangular matrix b...

    Text Solution

    |

  8. If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)], the...

    Text Solution

    |

  9. Using elementary transformations, find the inverse of the matrix[2-3 ...

    Text Solution

    |

  10. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  11. Solve the following equations by the invers method : x + y + z = ...

    Text Solution

    |

  12. If three numbers are added , their sum is 2 . If two times the seco...

    Text Solution

    |

  13. Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using...

    Text Solution

    |

  14. If A = [(x,0,0),(0,y,0),(0,0,z)] is a non-singular matrix, then find A...

    Text Solution

    |

  15. Find the inverse of A =[[costheta,-sintheta,0],[sintheta,costheta,0],[...

    Text Solution

    |

  16. If A = [(1,1),(1,2)], B = [(4,1),(3,1)], and C = [(24,7),(31,9)], then...

    Text Solution

    |

  17. If A = {:((1,-1,2),(3,0,-2),(1,0,3)):}, verify that A (adj A) = |A|* I...

    Text Solution

    |

  18. If A = [(2,3),(1,2)], B = [(1,0),(3,1)], find AB and (AB)^(-1)

    Text Solution

    |

  19. Solve the following system of equations by using matrix inversion meth...

    Text Solution

    |

  20. The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is Rs. ...

    Text Solution

    |