Home
Class 12
MATHS
If bar(AB) = 2hat(i) + hat(j) - 3 hat(k)...

If `bar(AB) = 2hat(i) + hat(j) - 3 hat(k)`, and A(1, 2, -1) is given point then corrdinates of B are________

A

(3, 3, -4)

B

(-3, 3, -2)

C

(3, 3, 2)

D

(-3, 3, 4)

Text Solution

AI Generated Solution

The correct Answer is:
To find the coordinates of point B given the position vector \(\bar{AB} = 2\hat{i} + \hat{j} - 3\hat{k}\) and point A(1, 2, -1), we can follow these steps: ### Step 1: Define the Position Vectors Let the coordinates of point B be \(B(x, y, z)\). The position vector of point A can be written as: \[ \vec{A} = 1\hat{i} + 2\hat{j} - 1\hat{k} \] The position vector of point B can be written as: \[ \vec{B} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 2: Use the Vector Equation The vector \(\bar{AB}\) can be expressed as: \[ \bar{AB} = \vec{B} - \vec{A} \] Substituting the position vectors, we have: \[ \bar{AB} = (x\hat{i} + y\hat{j} + z\hat{k}) - (1\hat{i} + 2\hat{j} - 1\hat{k}) \] This simplifies to: \[ \bar{AB} = (x - 1)\hat{i} + (y - 2)\hat{j} + (z + 1)\hat{k} \] ### Step 3: Set Up the Equation According to the problem, we know that: \[ \bar{AB} = 2\hat{i} + \hat{j} - 3\hat{k} \] Now we can set the two expressions for \(\bar{AB}\) equal to each other: \[ (x - 1)\hat{i} + (y - 2)\hat{j} + (z + 1)\hat{k} = 2\hat{i} + \hat{j} - 3\hat{k} \] ### Step 4: Compare Coefficients By comparing the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\), we can derive the following equations: 1. \(x - 1 = 2\) 2. \(y - 2 = 1\) 3. \(z + 1 = -3\) ### Step 5: Solve for x, y, and z Now we can solve these equations one by one: 1. From \(x - 1 = 2\): \[ x = 2 + 1 = 3 \] 2. From \(y - 2 = 1\): \[ y = 1 + 2 = 3 \] 3. From \(z + 1 = -3\): \[ z = -3 - 1 = -4 \] ### Step 6: Write the Coordinates of B Thus, the coordinates of point B are: \[ B(3, 3, -4) \] ### Final Answer The coordinates of B are \( (3, 3, -4) \). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINE AND PLANE |40 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If vec AB=2hat i+hat j3hat k and the coordinates of A are (1,2,-1), then the coordinates of B are

If vec(A)=-hat(i)+ x hat(j) - 3 hat(k) and vec(B) = 2hat(i) - hat(k) then the value(s) of x for which the dot product of bar(A) & bar(B) is equal to unity :

If bar(a) = 4 hat(i) + 3 hat(k) and bar(b) = - 2 hat(i) + hat(j) + 5 hat(k) then find 2 bar(a) + 5 bar(b)

A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) , respectively then length of vec(AB) is equal to?

The position vectors of three points A,B anc C (-4hat(i) +2hat(j) -3hat(k)) (hat(i) +3hat(j) -2hat(k)) "and " (-9hat(i) +hat(j) -4hat(k)) respectively . Show that the points A,B and C are collinear.

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

Find bar(a). bar(b) xx bar(c) , if bar(a) = 3 hat(i) - hat(j) + 4 hat(k), bar(b) = 2hat(i) + 3 hat(j) - hat(k), bar(c) = - 5 hat(i) + 2 hat(j) + 3 hat(k)

Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4hat(j)+7hat(k) . What is the scalar projection of bar (a) on bar( b) ?

Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-VECTOR AND THREE DIMENSIONAL GEOMETRY
  1. If cos alpha, cos beta, cos gamma are the direction cosines of a line ...

    Text Solution

    |

  2. If |bar(a)| = 2, |bar(b)| = 5, and bar(a).bar(b) = 8 then |bar(a) - ba...

    Text Solution

    |

  3. If bar(AB) = 2hat(i) + hat(j) - 3 hat(k), and A(1, 2, -1) is given poi...

    Text Solution

    |

  4. If l, m, n are direction cosines of a line then l hat(i) + m hat(j) + ...

    Text Solution

    |

  5. The values of c that satisfy |c bar(u)| = 3, bar(u) = hat(i) + 2 hat(j...

    Text Solution

    |

  6. The value of c if |c bar(u)| = sqrt(14), bar(u) = hat(i) + 2 hat(j) + ...

    Text Solution

    |

  7. The two vectors hat j+ hat k and 3 hat i- hat j+4 hat k represent the...

    Text Solution

    |

  8. Find the magnitude of a vector with initial point : (1, -3, 4), termin...

    Text Solution

    |

  9. Find the coordinates of the point which is located, three units behind...

    Text Solution

    |

  10. A(2, 3), B(-1, 5), C(-1, 1) and D(-7, 5) are four points in the Cartes...

    Text Solution

    |

  11. Find a unit vector in the opposite direction of bar(u). Where bar(u) =...

    Text Solution

    |

  12. The non zero vectors bar(a) and bar(b) are not collinear find the valu...

    Text Solution

    |

  13. If bar(a) = 4 hat(i) + 3 hat(k) and bar(b) = - 2 hat(i) + hat(j) + 5 ...

    Text Solution

    |

  14. Find the distance from (4, -2, 6) to the XZ-Plane.

    Text Solution

    |

  15. If the vectors 2 hat(i) - q hat(j) + 3 hat(k) and 4 hat(i) - 5 hat(j)...

    Text Solution

    |

  16. Find bar(a). bar(b) xx bar(c), if bar(a) = 3 hat(i) - hat(j) + 4 hat(k...

    Text Solution

    |

  17. If a line makes angle 90o, 60oand 30owith the positive direction of ...

    Text Solution

    |

  18. The vector bar(a) is directed due north and |bar(a)| = 24. The vector ...

    Text Solution

    |

  19. Show that following points are collinear P(4, 5, 2), Q(3, 2, 4), R(5, ...

    Text Solution

    |

  20. If a vector has direction angles 45^(@) and 60^(@) find the third dire...

    Text Solution

    |