Home
Class 12
MATHS
If y = 25^(log5 sin x ) +16^(log4cos x ...

If `y = 25^(log_5 sin x ) +16^(log_4cos x ) " then " (dy)/(dx) `= ______________

A

` 1`

B

` 0 `

C

` 9 `

D

` cos x - sin x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function given by \[ y = 25^{\log_5(\sin x)} + 16^{\log_4(\cos x)}, \] we will simplify the expression step by step. ### Step 1: Rewrite the bases in terms of powers We can express \(25\) and \(16\) as powers of \(5\) and \(4\) respectively: \[ 25 = 5^2 \quad \text{and} \quad 16 = 4^2. \] Thus, we can rewrite \(y\) as: \[ y = (5^2)^{\log_5(\sin x)} + (4^2)^{\log_4(\cos x)}. \] ### Step 2: Apply the power of a power rule Using the power of a power property \((a^m)^n = a^{mn}\), we can simplify further: \[ y = 5^{2 \log_5(\sin x)} + 4^{2 \log_4(\cos x)}. \] ### Step 3: Use the property of logarithms Using the property of logarithms that states \(a^{\log_a(b)} = b\), we can simplify each term: \[ y = \sin^2 x + \cos^2 x. \] ### Step 4: Use the Pythagorean identity We know from trigonometric identities that: \[ \sin^2 x + \cos^2 x = 1. \] Thus, we have: \[ y = 1. \] ### Step 5: Differentiate \(y\) with respect to \(x\) Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(1) = 0. \] ### Final Answer Hence, \[ \frac{dy}{dx} = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If y = (sin x)^(log x) " then " (dy)/(dx) = ?

If y= 4 ^(log_2sin x+ )9^(log _3 cos x ) ,then (dy)/(dx)=

If y= 4 ^(log_2sin x )-9^(log _3 cos x ) ,then (dy)/(dx)=

If y= e^(log (log x )) ,then (dy)/(dx) =

If y = log (cos e^(x)), then (dy)/(dx) is:

If y=5^(log x) then (dy)/(dx)=

If y=sin(log x) then find (dy)/(dx)

If y = log ( cos e ^(x)), then (dy)/(dx)=

If y=x^(log(log x)); then (dy)/(dx) is

y=(4)^(log_(2)sin x)+(9)^(log_(3)cos x), find (dy)/(dx)