Home
Class 12
MATHS
If y = tan ^(-1) ((2x)/(1-x^(2))) , "...

If ` y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx)` =____________

A

` (-2)/(1+x^(2))`

B

` 1`

C

` (2)/(1+x^(2))`

D

` (1)/(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \), we can follow these steps: ### Step 1: Recognize the function We start with the function: \[ y = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] ### Step 2: Use the derivative of the inverse tangent The derivative of \( y = \tan^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{2x}{1 - x^2} \). ### Step 3: Differentiate \( u \) First, we need to find \( \frac{du}{dx} \). We will use the quotient rule for differentiation: \[ u = \frac{2x}{1 - x^2} \] Let \( v = 1 - x^2 \). Then, \[ \frac{du}{dx} = \frac{(1 - x^2)(2) - (2x)(-2x)}{(1 - x^2)^2} \] This simplifies to: \[ \frac{du}{dx} = \frac{2(1 - x^2) + 4x^2}{(1 - x^2)^2} = \frac{2 + 2x^2}{(1 - x^2)^2} = \frac{2(1 + x^2)}{(1 - x^2)^2} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we can substitute \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{2x}{1 - x^2} \right)^2} \cdot \frac{2(1 + x^2)}{(1 - x^2)^2} \] ### Step 5: Simplify \( 1 + u^2 \) Calculating \( 1 + u^2 \): \[ u^2 = \left( \frac{2x}{1 - x^2} \right)^2 = \frac{4x^2}{(1 - x^2)^2} \] Thus, \[ 1 + u^2 = 1 + \frac{4x^2}{(1 - x^2)^2} = \frac{(1 - x^2)^2 + 4x^2}{(1 - x^2)^2} = \frac{1 - 2x^2 + x^4 + 4x^2}{(1 - x^2)^2} = \frac{1 + 2x^2 + x^4}{(1 - x^2)^2} \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Now substituting back: \[ \frac{dy}{dx} = \frac{1}{\frac{1 + 2x^2 + x^4}{(1 - x^2)^2}} \cdot \frac{2(1 + x^2)}{(1 - x^2)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{2(1 + x^2)}{1 + 2x^2 + x^4} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{2(1 + x^2)}{1 + 2x^2 + x^4} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((1 + x^(2))/(1 - x^(2))) " then " (dy)/(dx) = ?

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

if y=tan^(-1)((2^(x))/(1+2^(2x+1))) then (dy)/(dx)atx=0 is

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

y=tan^(-1)((2x)/(1+15x^(2))) find (dy)/(dx)

If y=tan^(-1)((1-x^2)/(1+x^2)) then (dy)/(dx)=

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?