Home
Class 12
MATHS
If sin ^(-1) (x^(3) +y^(3))= a then ...

If ` sin ^(-1) (x^(3) +y^(3))= ` a then ` (dy)/(dx)= ` __________

A

`(-x)/(cos a)`

B

`(-x^(2))/(y^(2))`

C

`(y^(2))//x^(2)`

D

`(sin a )/( y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^{-1}(x^3 + y^3) = a \] We want to find \(\frac{dy}{dx}\). ### Step 1: Differentiate both sides with respect to \(x\) Using implicit differentiation, we differentiate both sides: \[ \frac{d}{dx}(\sin^{-1}(x^3 + y^3)) = \frac{d}{dx}(a) \] Since \(a\) is a constant, its derivative is 0: \[ \frac{d}{dx}(\sin^{-1}(x^3 + y^3)) = 0 \] ### Step 2: Apply the chain rule Using the chain rule, we have: \[ \frac{1}{\sqrt{1 - (x^3 + y^3)^2}} \cdot \frac{d}{dx}(x^3 + y^3) = 0 \] ### Step 3: Differentiate \(x^3 + y^3\) Now, we differentiate \(x^3 + y^3\): \[ \frac{d}{dx}(x^3 + y^3) = 3x^2 + 3y^2 \frac{dy}{dx} \] ### Step 4: Substitute back into the equation Substituting this back into our equation gives: \[ \frac{1}{\sqrt{1 - (x^3 + y^3)^2}} \cdot (3x^2 + 3y^2 \frac{dy}{dx}) = 0 \] Since the fraction is equal to zero, we can conclude that: \[ 3x^2 + 3y^2 \frac{dy}{dx} = 0 \] ### Step 5: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ 3y^2 \frac{dy}{dx} = -3x^2 \] Dividing both sides by \(3y^2\) yields: \[ \frac{dy}{dx} = -\frac{x^2}{y^2} \] ### Final Answer Thus, we have: \[ \frac{dy}{dx} = -\frac{x^2}{y^2} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If y=sin(x^(3)) then (dy)/(dx)=

If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

If y=e^(3x)sin4x then (dy)/(dx)=

If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

If y = (1)/( (x^(2) +3)) , then (dy)/(dx) =

if y=sin^(-1)x then (dy)/(dx) is

If y = (sin^(4)(3x+1)) then (dy)/(dx) =?

If y=tan^(-1)((1-cos3x)/(sin3x)) , then (dy)/(dx)= . . .

If y=sin ^(-1) ((3x +4 sqrt(1-x^(2)))/( 5)),then (dy)/(dx)=