Home
Class 12
MATHS
If x^(2)+y^(2) = t +1//t and x^(4) +y...

If ` x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) ` then ` (dy)/(dx)` =______________

A

` 1/x`

B

` -y/x`

C

` x/y^(2)`

D

` -1/y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the equations: 1. \(x^2 + y^2 = t + \frac{1}{t}\) 2. \(x^4 + y^4 = t^2 + \frac{1}{t^2}\) ### Step-by-Step Solution: **Step 1: Express \(x^4 + y^4\) in terms of \(x^2 + y^2\)** We can use the identity: \[ x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \] Substituting \(x^2 + y^2 = t + \frac{1}{t}\): \[ x^4 + y^4 = \left(t + \frac{1}{t}\right)^2 - 2x^2y^2 \] Expanding the square: \[ x^4 + y^4 = t^2 + 2 + \frac{1}{t^2} - 2x^2y^2 \] **Step 2: Set the two expressions for \(x^4 + y^4\) equal to each other** From the problem, we have: \[ t^2 + \frac{1}{t^2} = t^2 + 2 + \frac{1}{t^2} - 2x^2y^2 \] Cancelling \(t^2 + \frac{1}{t^2}\) from both sides gives: \[ 0 = 2 + 2x^2y^2 \] Thus: \[ 2x^2y^2 = 2 \implies x^2y^2 = 1 \] **Step 3: Differentiate the equation \(x^2y^2 = 1\) with respect to \(x\)** Using the product rule: \[ \frac{d}{dx}(x^2y^2) = 0 \] This gives: \[ 2xy^2 + 2x^2y\frac{dy}{dx} = 0 \] **Step 4: Solve for \(\frac{dy}{dx}\)** Rearranging the equation: \[ 2x^2y\frac{dy}{dx} = -2xy^2 \] Dividing both sides by \(2x^2y\) (assuming \(x \neq 0\) and \(y \neq 0\)): \[ \frac{dy}{dx} = -\frac{y}{x} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{y}{x} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If y=t^(2)-t+1," then: "(dy)/(dx)=

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)