Home
Class 12
MATHS
If x= at^(4) y = 2at^(2) then (dy)/(d...

If ` x= at^(4) `
`y = 2at^(2)` then `(dy)/(dx)=` _____

A

` 1//t`

B

` -1//t`

C

` 1//t^(2)`

D

` -1//t^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = at^4\) and \(y = 2at^2\), we will use the chain rule. ### Step-by-Step Solution: 1. **Differentiate \(x\) with respect to \(t\)**: \[ x = at^4 \] To find \(\frac{dx}{dt}\), we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \frac{d}{dt}(at^4) = 4at^3 \] 2. **Differentiate \(y\) with respect to \(t\)**: \[ y = 2at^2 \] To find \(\frac{dy}{dt}\), we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d}{dt}(2at^2) = 4at \] 3. **Apply the chain rule to find \(\frac{dy}{dx}\)**: The chain rule states that: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{4at}{4at^3} \] 4. **Simplify the expression**: \[ \frac{dy}{dx} = \frac{4at}{4at^3} = \frac{1}{t^2} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{1}{t^2} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If y=2^(-x) then (dy)/(dx)=

If x = 2at^(2) ,y =at^(4) ,then (dy)/(dx) =

y=x^(2),then(dy)/(dx)=

If y = 2^(x) " then " (dy)/(dx) = ?

"If "y=2^(x)" then "(dy)/(dx)=?

(dy)/(dx)-2y=x

If x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) then (dy)/(dx) =______________

If x= at^(2) ,y= at ,then (dy)/(dx)=

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If x=at^(2),y=2at," then "(dy)/(dx)=