Home
Class 12
MATHS
y = log [4^(2x) ((x^(2)+5)/(sqrt(2x^(3)-...

` y = log [4^(2x) ((x^(2)+5)/(sqrt(2x^(3)-4)))^(3//2)], ` find ` (dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \log \left[ 4^{2x} \left( \frac{x^2 + 5}{\sqrt{2x^3 - 4}} \right)^{\frac{3}{2}} \right], \] we will follow these steps: ### Step 1: Simplify the logarithmic expression using properties of logarithms. Using the property \(\log(ab) = \log a + \log b\) and \(\log(a^b) = b \log a\), we can rewrite \(y\): \[ y = \log \left( 4^{2x} \right) + \log \left( \left( \frac{x^2 + 5}{\sqrt{2x^3 - 4}} \right)^{\frac{3}{2}} \right). \] This simplifies to: \[ y = 2x \log 4 + \frac{3}{2} \log \left( \frac{x^2 + 5}{\sqrt{2x^3 - 4}} \right). \] ### Step 2: Further simplify the logarithmic expression. Using the property \(\log \left( \frac{a}{b} \right) = \log a - \log b\): \[ y = 2x \log 4 + \frac{3}{2} \left( \log(x^2 + 5) - \log(\sqrt{2x^3 - 4}) \right). \] Since \(\log(\sqrt{a}) = \frac{1}{2} \log a\), we can rewrite it as: \[ y = 2x \log 4 + \frac{3}{2} \log(x^2 + 5) - \frac{3}{4} \log(2x^3 - 4). \] ### Step 3: Differentiate \(y\) with respect to \(x\). Now, we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx} \left( 2x \log 4 \right) + \frac{3}{2} \frac{d}{dx} \left( \log(x^2 + 5) \right) - \frac{3}{4} \frac{d}{dx} \left( \log(2x^3 - 4) \right). \] Calculating each derivative: 1. \(\frac{d}{dx} (2x \log 4) = 2 \log 4\) (since \(\log 4\) is a constant). 2. \(\frac{d}{dx} \left( \log(x^2 + 5) \right) = \frac{1}{x^2 + 5} \cdot \frac{d}{dx}(x^2 + 5) = \frac{2x}{x^2 + 5}\). 3. \(\frac{d}{dx} \left( \log(2x^3 - 4) \right) = \frac{1}{2x^3 - 4} \cdot \frac{d}{dx}(2x^3 - 4) = \frac{6x^2}{2x^3 - 4}\). Putting it all together: \[ \frac{dy}{dx} = 2 \log 4 + \frac{3}{2} \cdot \frac{2x}{x^2 + 5} - \frac{3}{4} \cdot \frac{6x^2}{2x^3 - 4}. \] ### Step 4: Simplify the expression. This gives us: \[ \frac{dy}{dx} = 2 \log 4 + \frac{3x}{x^2 + 5} - \frac{9x^2}{2(2x^3 - 4)}. \] ### Final Answer: Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = 2 \log 4 + \frac{3x}{x^2 + 5} - \frac{9x^2}{2(2x^3 - 4)}. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

y=log[(x+sqrt(x^(2)+25))/(sqrt(x^(2)+25)-x)], find (dy)/(dx)

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?

If y=log(x+sqrt(x^(2)+a^(2)) then find (dy)/(dx)

If y=(2x+3)^((3x-5)) , find (dy)/(dx) .

y=log[e^(3x)*((x-4)/(x+3))^(2/3)], find (dy)/(dx)

y=sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))), find (dy)/(dx)

If y=cos^(-1)((3x+4sqrt(1-x^(2)))/(5)), find (dy)/(dx)

If x^(2)+2xy+y^(3)=4, find (dy)/(dx)

If y=sqrt(((x-3)(x^(2)+4))/((3x^(2)+4x+5))) , find (dy)/(dx) .

y=ln(x+sqrt(x^(2)+a^(2))). Find (dy)/(dx)

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-DIFFERENTIATION
  1. If x = sin theta, y = tan theta then find (dy)/(dx)

    Text Solution

    |

  2. Differentiate sin ^(2) (sin ^(-1) (x^(2)) ) w.r. to x

    Text Solution

    |

  3. If y=logsqrt((1-cos((3x)/(2)))/(1+cos ((3x)/(2)))),"then "dy/dx=

    Text Solution

    |

  4. y = log [4^(2x) ((x^(2)+5)/(sqrt(2x^(3)-4)))^(3//2)], find (dy)/(dx)

    Text Solution

    |

  5. Differentiate cot ^(-1) ((cos x )/(1 +sin x )) w.r. to x

    Text Solution

    |

  6. Differentiate sin ^(-1) ((2 cos x + 3 sin x )/(sqrt(13))) w.r.to x

    Text Solution

    |

  7. Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to x

    Text Solution

    |

  8. If log5 ((x^(4)+y^(4))/(x^(4)-y^(4))) =2, show that (dy)/(dx) = (12...

    Text Solution

    |

  9. If y= sqrt(cos theta+sqrt(cos theta +sqrt(cos theta+......infty)))...

    Text Solution

    |

  10. Find the derivative of cos ^(-1) x w.r. to sqrt(1-x^(2))

    Text Solution

    |

  11. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  12. If y = 5^(x) .x^(5).x^(5).5^(5) , find (dy)/(dx)

    Text Solution

    |

  13. If y = e^(m tan ^(-1) x) , show that (1+x^(2)) (d^(2)y)/(dx^(2)) +(2...

    Text Solution

    |

  14. If x^(7) .y^(5)=(x+y)^(12) , show that (dy)/(dx) = (y)/(x)

    Text Solution

    |

  15. Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to tan ^(-1) ((...

    Text Solution

    |

  16. If y=sin ^(-1) ((asin x +bcos x )/( sqrt(a^(2) +b^(2)))) ,then (dy)/(...

    Text Solution

    |

  17. If y = cos ( m cos ^(-1) x ) then show that (1-x^(2) ) (d^(2) y)/...

    Text Solution

    |

  18. If y = f(u) is a differentiable functions of u and u = g(x) is a dif...

    Text Solution

    |

  19. Suppose y=f (x) is differentiable functions of x on an interval I and ...

    Text Solution

    |

  20. If x = f(t) and y = g(t) are differentiable functions of t so that y...

    Text Solution

    |