Home
Class 12
MATHS
Differentiate cot ^(-1) ((cos x )/(1 +si...

Differentiate `cot ^(-1) ((cos x )/(1 +sin x )) ` w.r. to x

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cot^{-1} \left( \frac{\cos x}{1 + \sin x} \right) \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the Function Let \[ y = \cot^{-1} \left( \frac{\cos x}{1 + \sin x} \right) \] ### Step 2: Use the Cotangent Identity Recall that \( \cot^{-1}(u) \) can be rewritten using the identity: \[ \cot^{-1}(u) = \tan^{-1}\left(\frac{1}{u}\right) \] Thus, we can write: \[ y = \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right) \] ### Step 3: Differentiate using the Chain Rule Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1 + \sin x}{\cos x}\right)^2} \cdot \frac{d}{dx}\left(\frac{1 + \sin x}{\cos x}\right) \] ### Step 4: Differentiate the Inner Function Let \( u = \frac{1 + \sin x}{\cos x} \). We need to differentiate \( u \): Using the quotient rule: \[ \frac{du}{dx} = \frac{\cos x \cdot \frac{d}{dx}(1 + \sin x) - (1 + \sin x) \cdot \frac{d}{dx}(\cos x)}{\cos^2 x} \] Calculating the derivatives: - \( \frac{d}{dx}(1 + \sin x) = \cos x \) - \( \frac{d}{dx}(\cos x) = -\sin x \) Substituting these into the quotient rule gives: \[ \frac{du}{dx} = \frac{\cos x \cdot \cos x - (1 + \sin x)(-\sin x)}{\cos^2 x} = \frac{\cos^2 x + (1 + \sin x)\sin x}{\cos^2 x} \] ### Step 5: Substitute back into the Derivative Now we substitute \( \frac{du}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1 + \sin x}{\cos x}\right)^2} \cdot \frac{\cos^2 x + (1 + \sin x)\sin x}{\cos^2 x} \] ### Step 6: Simplify the Expression To simplify \( \frac{dy}{dx} \), we can use the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \): \[ 1 + \left(\frac{1 + \sin x}{\cos x}\right)^2 = \frac{\cos^2 x + (1 + \sin x)^2}{\cos^2 x} \] Thus, we can simplify: \[ \frac{dy}{dx} = \frac{\cos^2 x + (1 + \sin x)\sin x}{\cos^2 x} \cdot \frac{\cos^2 x}{\cos^2 x + (1 + \sin x)^2} \] ### Step 7: Final Result After simplification, we find that: \[ \frac{dy}{dx} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise LINEAR PROGRAMMING PROBLEMS|30 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Differentiate x cot^(2)x

Differentiate cot ^(-1)sqrt(x)

Differentiate cot^(-1)((1-x)/(1+x)) w.r.t. x.

Differentiate w.r.t.x,cos^(-1)(sin x)

Differentiate sin ^(-1) ((2 cos x + 3 sin x )/(sqrt(13))) w.r.to x

Differentiate wrt x : cos x*cot x

Differentiate w.r.t. x: y=(cos x)^(sin x)+x^2

Differentiate sin x w.r.t. cos x

Differentiate cot^(-1)((1-x)/(1+x)) with respect to x:

differentiate (sin x)/(1+cos x)

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-DIFFERENTIATION
  1. If x = sin theta, y = tan theta then find (dy)/(dx)

    Text Solution

    |

  2. Differentiate sin ^(2) (sin ^(-1) (x^(2)) ) w.r. to x

    Text Solution

    |

  3. If y=logsqrt((1-cos((3x)/(2)))/(1+cos ((3x)/(2)))),"then "dy/dx=

    Text Solution

    |

  4. y = log [4^(2x) ((x^(2)+5)/(sqrt(2x^(3)-4)))^(3//2)], find (dy)/(dx)

    Text Solution

    |

  5. Differentiate cot ^(-1) ((cos x )/(1 +sin x )) w.r. to x

    Text Solution

    |

  6. Differentiate sin ^(-1) ((2 cos x + 3 sin x )/(sqrt(13))) w.r.to x

    Text Solution

    |

  7. Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to x

    Text Solution

    |

  8. If log5 ((x^(4)+y^(4))/(x^(4)-y^(4))) =2, show that (dy)/(dx) = (12...

    Text Solution

    |

  9. If y= sqrt(cos theta+sqrt(cos theta +sqrt(cos theta+......infty)))...

    Text Solution

    |

  10. Find the derivative of cos ^(-1) x w.r. to sqrt(1-x^(2))

    Text Solution

    |

  11. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  12. If y = 5^(x) .x^(5).x^(5).5^(5) , find (dy)/(dx)

    Text Solution

    |

  13. If y = e^(m tan ^(-1) x) , show that (1+x^(2)) (d^(2)y)/(dx^(2)) +(2...

    Text Solution

    |

  14. If x^(7) .y^(5)=(x+y)^(12) , show that (dy)/(dx) = (y)/(x)

    Text Solution

    |

  15. Differentiate tan ^(-1) ((8x)/(1-15x^(2))) w.r.to tan ^(-1) ((...

    Text Solution

    |

  16. If y=sin ^(-1) ((asin x +bcos x )/( sqrt(a^(2) +b^(2)))) ,then (dy)/(...

    Text Solution

    |

  17. If y = cos ( m cos ^(-1) x ) then show that (1-x^(2) ) (d^(2) y)/...

    Text Solution

    |

  18. If y = f(u) is a differentiable functions of u and u = g(x) is a dif...

    Text Solution

    |

  19. Suppose y=f (x) is differentiable functions of x on an interval I and ...

    Text Solution

    |

  20. If x = f(t) and y = g(t) are differentiable functions of t so that y...

    Text Solution

    |