Home
Class 12
MATHS
int (1)/(sqrtx+ sqrt(x^(3)))dx=…....

`int (1)/(sqrtx+ sqrt(x^(3)))dx=`….

A

`2 tan^(-1) (sqrtx)+c`

B

`tan^(-1) (2x-1)+c`

C

`2 tan sqrtx+c`

D

`2 tan^(-1) (x) +c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{x} + \sqrt{x^3}} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting the integrand: \[ \sqrt{x^3} = \sqrt{x} \cdot \sqrt{x^2} = \sqrt{x} \cdot x = x^{3/2} \] Thus, we can express the integral as: \[ \int \frac{1}{\sqrt{x} + x^{3/2}} \, dx \] Next, we can factor out \( \sqrt{x} \) from the denominator: \[ \sqrt{x} + x^{3/2} = \sqrt{x}(1 + \sqrt{x}) \] So, we rewrite the integral: \[ \int \frac{1}{\sqrt{x}(1 + \sqrt{x})} \, dx \] ### Step 2: Substitute \( \sqrt{x} = t \) Let \( t = \sqrt{x} \). Then, \( x = t^2 \) and \( dx = 2t \, dt \). Substituting these into the integral gives: \[ \int \frac{2t}{t(1 + t)} \, dt = \int \frac{2}{1 + t} \, dt \] ### Step 3: Integrate Now we can integrate: \[ \int \frac{2}{1 + t} \, dt = 2 \ln |1 + t| + C \] ### Step 4: Substitute back for \( t \) Recall that \( t = \sqrt{x} \). Therefore, we substitute back: \[ 2 \ln |1 + \sqrt{x}| + C \] ### Final Answer The final result of the integral is: \[ \int \frac{1}{\sqrt{x} + \sqrt{x^3}} \, dx = 2 \ln |1 + \sqrt{x}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(1+x)+sqrt(x+3))dx

int (2)/(sqrtx-sqrt(x+3)) dx =….

int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

Evaluate : int(1)/(sqrtx+sqrt(x-1))dx .

int(dx)/(x sqrt(1-x^(3)))=

int(dx)/(x sqrt(1-x^(3)))=

int1/(sqrtx(1-sqrtx)dx=

int(1)/(sqrt(1+sqrtx))dx=