Home
Class 12
MATHS
int (1)/(cos x-sinx )dx=…...

`int (1)/(cos x-sinx )dx=`…

A

`(1)/(sqrt2)log ["cosec"(x+(pi)/(4))-cot (x+(pi)/(4))]+c`

B

`sqrt2 log [cosec (x+(pi)/(4))+cot (x+(pi)/(4))]+c`

C

`(1)/(sqrt2)log [sec (x+(pi)/(4)) + tan (x+(pi)/(4))]+c`

D

`sqrt2 log [sec (x+(pi)/(4))-tan (x+(pi)/(4))]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\cos x - \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\cos x - \sin x} \, dx \] ### Step 2: Multiply by \(\frac{1}{\sqrt{2}}\) To simplify the expression, we multiply the numerator and denominator by \(\frac{1}{\sqrt{2}}\): \[ I = \int \frac{1/\sqrt{2}}{(1/\sqrt{2})\cos x - (1/\sqrt{2})\sin x} \, dx \] ### Step 3: Recognize the Trigonometric Identity We can rewrite the denominator using the angle addition formula: \[ \frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x = \cos\left(\frac{\pi}{4}\right) \cos x - \sin\left(\frac{\pi}{4}\right) \sin x = \cos\left(x + \frac{\pi}{4}\right) \] Thus, we have: \[ I = \int \frac{1/\sqrt{2}}{\cos\left(x + \frac{\pi}{4}\right)} \, dx \] ### Step 4: Factor out \(\frac{1}{\sqrt{2}}\) Now, factor out \(\frac{1}{\sqrt{2}}\): \[ I = \frac{1}{\sqrt{2}} \int \sec\left(x + \frac{\pi}{4}\right) \, dx \] ### Step 5: Integrate the Secant Function The integral of \(\sec u\) is: \[ \int \sec u \, du = \ln |\sec u + \tan u| + C \] Applying this to our integral: \[ I = \frac{1}{\sqrt{2}} \left( \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \right) \] ### Step 6: Final Expression Thus, we can express the final answer as: \[ I = \frac{1}{\sqrt{2}} \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \] ### Summary of the Solution The final result for the integral \( \int \frac{1}{\cos x - \sin x} \, dx \) is: \[ I = \frac{1}{\sqrt{2}} \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/(3cos x+4sinx)dx=

int(cos2x)/(cosx-sinx)dx=

int e^x( cos x+sinx)dx

int (sinx)/(1-cos x)dx

int(cos 2x)/(sinx)dx=

int(dx)/(cos x-sinx) is equal to

int(sinx)/((1-sinx))dx=?

Evaluate : int(1+cos x)/(x+sinx)dx .

int cos^(3)x sinx dx