Home
Class 12
MATHS
int (x^(2))/(sqrt(1-x^(6)))dx=…....

`int (x^(2))/(sqrt(1-x^(6)))dx=`….

A

`-sin^(-1) (x^(3))+c`

B

`cos^(-1) (x^(3))+c`

C

`sin^(-1) (x^(3))+c`

D

`(1)/(3) sin^(-1) (x^(3))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{\sqrt{1 - x^6}} \, dx \), we can use a substitution method. Here are the steps to find the solution: ### Step 1: Substitution Let \( t = x^3 \). Then, we differentiate to find \( dt \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] We can express \( x^2 \) in terms of \( t \): \[ x^2 = t^{2/3} \] ### Step 2: Rewrite the integral Substituting \( x^2 \) and \( dx \) into the integral, we have: \[ \int \frac{x^2}{\sqrt{1 - x^6}} \, dx = \int \frac{t^{2/3}}{\sqrt{1 - t^2}} \cdot \frac{dt}{3t^{2/3}} = \frac{1}{3} \int \frac{1}{\sqrt{1 - t^2}} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{\sqrt{1 - t^2}} \, dt \) is a standard integral, which gives: \[ \int \frac{1}{\sqrt{1 - t^2}} \, dt = \sin^{-1}(t) + C \] Thus, we can write: \[ \frac{1}{3} \int \frac{1}{\sqrt{1 - t^2}} \, dt = \frac{1}{3} \sin^{-1}(t) + C \] ### Step 4: Back-substitute Now, we substitute back \( t = x^3 \): \[ \frac{1}{3} \sin^{-1}(t) + C = \frac{1}{3} \sin^{-1}(x^3) + C \] ### Final Answer Therefore, the solution to the integral is: \[ \int \frac{x^2}{\sqrt{1 - x^6}} \, dx = \frac{1}{3} \sin^{-1}(x^3) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)dx)/(sqrt(1-x^(6)))

int(x^(2)dx)/(sqrt(1+x^(6)))

int(x^(2)dx)/(sqrt(1+x^(6)))

"int(x^(2)dx)/(sqrt(1+x^(6)))

int(x^(2))/(sqrt(1-4x^(6)))dx=(1)/(6)sin^(-1){f(x)}+*Find f'(2)

int(a^(x))/(sqrt(1-a^(2x)))dx

int(x^(2))/(sqrt(x^(6)-a^(6)))dx

int(x^(2))/(sqrt(x+1))dx

int(x)/(sqrt(1-x^(2)))dx=?

int(x+2)/(sqrt(x^(2)+5x+6))dx