Home
Class 12
MATHS
int (2)/(sqrtx-sqrt(x+3)) dx=…....

`int (2)/(sqrtx-sqrt(x+3)) dx`=….

A

`-(2)/(3) [x^((3)/(2)) + (x+3)^((3)/(2))]+c`

B

`(2)/(3) [x^((3)/(2))-(x+3)^((3)/(2))]+c`

C

`(4)/(9) [x^((3)/(2)) -(x+3)^((3)/(2))]+c`

D

`-(4)/(9) [x^((3)/(2)) + (x+ 3)^((3)/(2))]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2}{\sqrt{x} - \sqrt{x+3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \frac{2}{\sqrt{x} - \sqrt{x+3}} \, dx \). ### Step 2: Rationalize the Denominator To simplify the integral, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ I = \int \frac{2(\sqrt{x} + \sqrt{x+3})}{(\sqrt{x} - \sqrt{x+3})(\sqrt{x} + \sqrt{x+3})} \, dx \] ### Step 3: Simplify the Denominator The denominator simplifies as follows: \[ (\sqrt{x} - \sqrt{x+3})(\sqrt{x} + \sqrt{x+3}) = x - (x + 3) = -3 \] So, we have: \[ I = \int \frac{2(\sqrt{x} + \sqrt{x+3})}{-3} \, dx = -\frac{2}{3} \int (\sqrt{x} + \sqrt{x+3}) \, dx \] ### Step 4: Split the Integral Now, we can split the integral: \[ I = -\frac{2}{3} \left( \int \sqrt{x} \, dx + \int \sqrt{x+3} \, dx \right) \] ### Step 5: Integrate Each Term Now we will integrate each term separately. 1. For \( \int \sqrt{x} \, dx \): \[ \int \sqrt{x} \, dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2} \] 2. For \( \int \sqrt{x+3} \, dx \): Using the substitution \( u = x + 3 \), \( du = dx \): \[ \int \sqrt{x+3} \, dx = \int \sqrt{u} \, du = \frac{2}{3} u^{3/2} = \frac{2}{3} (x + 3)^{3/2} \] ### Step 6: Combine the Results Now, substituting back into the integral: \[ I = -\frac{2}{3} \left( \frac{2}{3} x^{3/2} + \frac{2}{3} (x + 3)^{3/2} \right) \] ### Step 7: Simplify This simplifies to: \[ I = -\frac{4}{9} \left( x^{3/2} + (x + 3)^{3/2} \right) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{2}{\sqrt{x} - \sqrt{x+3}} \, dx = -\frac{4}{9} \left( x^{3/2} + (x + 3)^{3/2} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int (1)/(sqrtx+ sqrt(x^(3)))dx= ….

int (sqrtx+1)(x-sqrt(x)+1)dx

int1/(sqrtx(1-sqrtx)dx=

Evaluate : int(1)/(sqrtx+sqrt(x-1))dx .

int (1+x+sqrt(1+x^2))/(sqrtx+sqrt(1+x)) dx=

int(1)/(sqrt(1+sqrtx))dx=

int (dx)/(x sqrt(x^2+3))

int(dx)/(sqrt(3x+5)-sqrt(3x+2))=

(8) int(1/(sqrtx)-sqrtx)dx

Evaluate : int_(0)^(9) (sqrtx)/(sqrtx+sqrt(9-x)) dx