Home
Class 12
MATHS
int (1)/(sqrt(3x^(2) +x))dx...

`int (1)/(sqrt(3x^(2) +x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{3x^2 + x}} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int \frac{1}{\sqrt{3x^2 + x}} \, dx \] We can factor out a constant from the square root: \[ I = \int \frac{1}{\sqrt{x(3x + 1)}} \, dx \] ### Step 2: Use Substitution To simplify the integral further, we can use a substitution. Let: \[ x = \frac{1}{6} + u \] Then, we have: \[ dx = du \] Substituting this into the integral gives: \[ I = \int \frac{1}{\sqrt{3\left(\frac{1}{6} + u\right)^2 + \left(\frac{1}{6} + u\right)}} \, du \] ### Step 3: Expand and Simplify Now we will expand the expression inside the square root: \[ 3\left(\frac{1}{6} + u\right)^2 + \left(\frac{1}{6} + u\right) = 3\left(\frac{1}{36} + \frac{1}{3}u + u^2\right) + \left(\frac{1}{6} + u\right) \] This simplifies to: \[ \frac{1}{12} + u + 3u^2 \] ### Step 4: Rewrite the Integral The integral now becomes: \[ I = \int \frac{1}{\sqrt{3u^2 + u + \frac{1}{12}}} \, du \] ### Step 5: Complete the Square To simplify the expression under the square root, we complete the square: \[ 3u^2 + u + \frac{1}{12} = 3\left(u^2 + \frac{1}{3}u + \frac{1}{36}\right) = 3\left(u + \frac{1}{6}\right)^2 - \frac{1}{12} \] ### Step 6: Substitute Back Substituting this back into the integral gives: \[ I = \int \frac{1}{\sqrt{3\left(u + \frac{1}{6}\right)^2 - \frac{1}{12}}} \, du \] ### Step 7: Use the Integral Formula Using the formula for the integral of the form \( \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln |x + \sqrt{x^2 - a^2}| + C \), we can solve the integral. ### Step 8: Final Answer After performing the integration and substituting back for \( x \), we find: \[ I = \frac{1}{\sqrt{3}} \ln \left| x + \frac{1}{6} + \sqrt{3\left(x + \frac{1}{6}\right)^2 - \frac{1}{12}} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(2x^(2)+3x-2))dx

int(1)/(sqrt(x^(2)|3x|d1))dx

int(1)/(sqrt(2x^(2)+2x+3))dx

Evaluate: int(1)/(sqrt(3-2x-x^(2)))dx

int(1)/(sqrt(3x-2))dx

int(3x-1)/(sqrt(x^(2)+9))dx

int(1)/(sqrt((x^(2)+3x+1)))dx

int(1)/(sqrt(3-6x-9x^(2)))dx is equal to

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(1)/(sqrt(1-(3x+2)^(2)))dx