Home
Class 12
MATHS
int (e^(2x) +e^(-2x))/(e^(x)) dx...

`int (e^(2x) +e^(-2x))/(e^(x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^{2x} + e^{-2x}}{e^x} \, dx \), we can break it down step by step. ### Step 1: Simplify the integrand We start by simplifying the expression inside the integral: \[ \frac{e^{2x} + e^{-2x}}{e^x} = \frac{e^{2x}}{e^x} + \frac{e^{-2x}}{e^x} \] Using the property of exponents, we can rewrite this as: \[ e^{2x - x} + e^{-2x - x} = e^{x} + e^{-3x} \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int \left( e^{x} + e^{-3x} \right) \, dx \] ### Step 3: Integrate each term Now we will integrate each term separately: 1. The integral of \( e^{x} \): \[ \int e^{x} \, dx = e^{x} + C_1 \] 2. The integral of \( e^{-3x} \): \[ \int e^{-3x} \, dx = -\frac{1}{3} e^{-3x} + C_2 \] ### Step 4: Combine the results Combining these results, we have: \[ \int \left( e^{x} + e^{-3x} \right) \, dx = e^{x} - \frac{1}{3} e^{-3x} + C \] where \( C = C_1 + C_2 \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{e^{2x} + e^{-2x}}{e^x} \, dx = e^{x} - \frac{1}{3} e^{-3x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int(e^(x+2)-e^(2-x))/(e^(1-2x))dx

Evaluate: int(e^(2x)-2e^(x))/(e^(2x)+1)dx

int(e^(-4x)+e^(-2x)+1)/(e^-x)dx

int e^(2x)dx=

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

int (2x^(2) +e^(x))dx

int (e ^ (2x) -e ^ (- 2x)) / (e ^ (2x) + e ^ (- 2x)) dx

int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A log|(e^(x)+e^(-x)+a)/(e^(x)+e^(-x)-a)|+c then (A,a) =

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=