Home
Class 12
MATHS
int x^(x) (1+ log x) dx...

`int x^(x) (1+ log x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^x (1 + \log x) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^x \). To differentiate this, we can use the property of logarithms: \[ \log t = x \log x \] Now, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\log t) = \frac{1}{t} \frac{dt}{dx} = \log x + 1 \] Thus, we have: \[ \frac{dt}{dx} = t (\log x + 1) \] ### Step 2: Express \( dx \) in terms of \( dt \) From the equation above, we can express \( dx \) as: \[ dx = \frac{dt}{t (\log x + 1)} \] ### Step 3: Substitute back into the integral Now, substitute \( t = x^x \) and \( dx \) into the integral: \[ \int x^x (1 + \log x) \, dx = \int t \cdot \frac{dt}{t (\log x + 1)} \] This simplifies to: \[ \int dt = t + C \] ### Step 4: Substitute back for \( t \) Now, substitute back \( t = x^x \): \[ \int x^x (1 + \log x) \, dx = x^x + C \] ### Final Answer Thus, the final answer is: \[ \int x^x (1 + \log x) \, dx = x^x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

"int x^(x)(1+x+x log x)dx=

int x^(4)(1+log x)dx

int x^(x)(1+log_(e)x)dx

int e^(x)((1+x log x)/(x))dx

Assertion (A) : int(e^(x))/(x) (1 + x log x) dx = e^(x) log x +c. Reason (R) : int e^(x) [f(x) + f'(x)] dx = e^(x) f(x) + c

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

Evaluate int (1)/(x log x) dx

f(x)=int x^(x+1)(log x+(log x)^(2))dx and f(1)=-1 then (e^(-e)f(e)+1)e^(-1)

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

int(1)/(x)(1+log x)dx