Home
Class 12
MATHS
int (1)/(x sin^(2) (log x))dx...

`int (1)/(x sin^(2) (log x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{x \sin^2(\log x)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, differentiating both sides gives us: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] Since \( x = e^t \), we can rewrite the integral in terms of \( t \). ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int \frac{1}{e^t \sin^2(t)} e^t \, dt = \int \frac{1}{\sin^2(t)} \, dt \] ### Step 3: Simplify the Integral The integral simplifies to: \[ I = \int \csc^2(t) \, dt \] ### Step 4: Integrate We know that the integral of \( \csc^2(t) \) is: \[ \int \csc^2(t) \, dt = -\cot(t) + C \] ### Step 5: Back Substitute Now, we substitute back \( t = \log x \): \[ I = -\cot(\log x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x \sin^2(\log x)} \, dx = -\cot(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x sin^(2)(1+log x))

Evaluate: int(1)/(x^(3))sin(log x)dx

Evaluate: int(1)/(x log x(2+log x))dx

int sin^(2)(log_(e)x)dx

int sin(log x)dx

" 2) "int(2)/(x)sin(log x)dx

int_(1)^(2)(log x)/(x)dx=

Evaluate: int(1)/(x log x(2+log x)dx)

Evaluate: int sin^(2)(log x)dx

int sin ^ (2) (ln x) dx =