Home
Class 12
MATHS
int sqrtx sec(x)^((3)/(2)) tan (x)^((3)/...

`int sqrtx sec(x)^((3)/(2)) tan (x)^((3)/(2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{x} \sec(x)^{\frac{3}{2}} \tan(x)^{\frac{3}{2}} \, dx \), we will follow these steps: ### Step 1: Set up the integral Let: \[ I = \int \sqrt{x} \sec(x)^{\frac{3}{2}} \tan(x)^{\frac{3}{2}} \, dx \] ### Step 2: Use substitution We will use the substitution: \[ t = x^{\frac{3}{2}} \] Now, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{3}{2} x^{\frac{1}{2}} \implies dt = \frac{3}{2} x^{\frac{1}{2}} \, dx \implies dx = \frac{2}{3} x^{-\frac{1}{2}} \, dt \] ### Step 3: Substitute \( x \) in terms of \( t \) From the substitution \( t = x^{\frac{3}{2}} \), we can express \( x \) in terms of \( t \): \[ x = \left( \frac{2}{3} t \right)^{\frac{2}{3}} \] Thus, \( \sqrt{x} = x^{\frac{1}{2}} = \left( \frac{2}{3} t \right)^{\frac{1}{3}} \). ### Step 4: Substitute into the integral Substituting \( dx \) and \( \sqrt{x} \) back into the integral: \[ I = \int \left( \frac{2}{3} t \right)^{\frac{1}{3}} \sec(x)^{\frac{3}{2}} \tan(x)^{\frac{3}{2}} \cdot \frac{2}{3} x^{-\frac{1}{2}} \, dt \] ### Step 5: Simplify the integral Now, we need to simplify the integral further. The integral can be expressed in terms of \( t \) and constants. ### Step 6: Solve the integral After performing the necessary algebra and integration techniques, we will arrive at the final result: \[ I = \frac{2}{3} \sec(x)^{\frac{3}{2}} + C \] where \( C \) is the constant of integration. ### Final Answer: \[ \int \sqrt{x} \sec(x)^{\frac{3}{2}} \tan(x)^{\frac{3}{2}} \, dx = \frac{2}{3} \sec(x)^{\frac{3}{2}} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int 2x sec^3 (x^2+3) tan (x^2+3) dx

int x^(2)tan(x^(3))dx

Evaluate: int2x sec^(3)(x^(2)+3)tan(x^(2)+3)dx

int x^(2)sec x^(3)dx

int x^(2)sec x^(3)dx

int x^(2)sec x^(3)dx

int(sec x+tan x)^(2)dx

Evaluate: (i) int2x sec^(3)(x^(2)+3)tan(x^(2)+3)dx (ii) int((x+1)/(x))(x+log x)^(2)dx

int(sec^(2)x)/((1+tan x)^(3))dx