Home
Class 12
MATHS
int (2+cot^(2) x) dx...

`int (2+cot^(2) x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (2 + \cot^2 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral: \[ \int (2 + \cot^2 x) \, dx = \int 2 \, dx + \int \cot^2 x \, dx \] ### Step 2: Integrate the first part The integral of \( 2 \) with respect to \( x \) is straightforward: \[ \int 2 \, dx = 2x \] ### Step 3: Integrate the second part Next, we need to integrate \( \cot^2 x \). We can use the identity: \[ \cot^2 x = \csc^2 x - 1 \] Thus, we can rewrite the integral: \[ \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx \] This can be split into two separate integrals: \[ \int \cot^2 x \, dx = \int \csc^2 x \, dx - \int 1 \, dx \] ### Step 4: Integrate \( \csc^2 x \) The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] ### Step 5: Integrate the constant The integral of \( 1 \) is: \[ \int 1 \, dx = x \] ### Step 6: Combine the results Now, we can combine all parts: \[ \int \cot^2 x \, dx = -\cot x - x \] ### Step 7: Write the final result Putting it all together, we have: \[ \int (2 + \cot^2 x) \, dx = 2x + (-\cot x - x) + C \] This simplifies to: \[ \int (2 + \cot^2 x) \, dx = x - \cot x + C \] ### Final Answer: \[ \int (2 + \cot^2 x) \, dx = x - \cot x + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(x cot^(2)x)dx

int cot^(2) x dx = ?

Evaluate the following integrals : (c ) int(3-2 cot^(2) x)/( cos^(2) x) dx,

2. int ( 1-cot^2x)dx

int (cot ^ (2) x) / (cot EC ^ (2) + cos ecx x) dx =

int (tan^2x+cot^2x)dx

int cot^(2)((x)/(2))dx

int(tan^(2)x-cot^(2)x)dx=