Home
Class 12
MATHS
int (sin (x-a))/(cos (x+b))ax...

`int (sin (x-a))/(cos (x+b))ax`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin(x-a)}{\cos(x+b)} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the sine function using the angle subtraction formula: \[ \sin(x-a) = \sin x \cos a - \cos x \sin a \] Thus, we can express the integral as: \[ I = \int \frac{\sin x \cos a - \cos x \sin a}{\cos(x+b)} \, dx \] ### Step 2: Split the integral We can split the integral into two separate integrals: \[ I = \int \frac{\sin x \cos a}{\cos(x+b)} \, dx - \int \frac{\cos x \sin a}{\cos(x+b)} \, dx \] ### Step 3: Factor out constants We can factor out the constants from the integrals: \[ I = \cos a \int \frac{\sin x}{\cos(x+b)} \, dx - \sin a \int \frac{\cos x}{\cos(x+b)} \, dx \] ### Step 4: Use substitution for the first integral For the first integral, we can use the substitution \( u = x + b \), which gives \( du = dx \) and \( x = u - b \): \[ \int \frac{\sin x}{\cos(x+b)} \, dx = \int \frac{\sin(u-b)}{\cos u} \, du \] Using the angle subtraction formula again: \[ \sin(u-b) = \sin u \cos b - \cos u \sin b \] Thus, we have: \[ \int \frac{\sin(u-b)}{\cos u} \, du = \int \frac{\sin u \cos b - \cos u \sin b}{\cos u} \, du = \cos b \int \tan u \, du - \sin b \int 1 \, du \] ### Step 5: Integrate Now, we can integrate: \[ \int \tan u \, du = -\log|\cos u| + C \] \[ \int 1 \, du = u + C \] So, substituting back: \[ \int \frac{\sin x}{\cos(x+b)} \, dx = \cos b (-\log|\cos(x+b)|) - \sin b (x+b) + C \] ### Step 6: Substitute back into the original integral Now substituting back into our expression for \( I \): \[ I = \cos a \left( \cos b (-\log|\cos(x+b)|) - \sin b (x+b) \right) - \sin a (x+b) + C \] ### Final Result Thus, the final result for the integral is: \[ I = -\cos a \cos b \log|\cos(x+b)| - (\cos a \sin b + \sin a)(x+b) + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(sin(x+a))/(cos(x-b))dx=

int(sin(x-a)dx)/cos(x-b)

If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then

Evaluate: int(1)/(sin(x-a)cos(x-b))dx

int (cos(x+a))/(sin(x+b))dx

int(cos(x-a))/(sin(x+b))dx=

int(cos(x-a))/(sin(x+b))dx

If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c , then k=

int(1)/(sin(x-a)cos(x-b))dx is equal to

If int (sin x)/(sin (x-alpha))dx =Ax+B log sin (x-alpha)+C , then the value of (A,B) , is