Home
Class 12
MATHS
int sqrt(4^(x) (4^(x) + 4))dx...

`int sqrt(4^(x) (4^(x) + 4))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{4^x (4^x + 4)} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ I = \int \sqrt{4^x (4^x + 4)} \, dx \] We can rewrite \( 4^x \) as \( (2^2)^x = 2^{2x} \). Therefore, we have: \[ I = \int \sqrt{2^{2x} (2^{2x} + 4)} \, dx \] Next, we can factor out \( 4 \) from the second term inside the square root: \[ I = \int \sqrt{2^{2x} (2^{2x} + 2^2)} \, dx \] ### Step 2: Factor out \( 2^{2x} \) Now we can factor out \( 2^{2x} \) from the square root: \[ I = \int \sqrt{2^{2x}} \sqrt{2^{2x} + 4} \, dx = \int 2^x \sqrt{2^{2x} + 4} \, dx \] ### Step 3: Substitute \( 2^x \) with \( t \) Let \( 2^x = t \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{t \ln 2} \] Substituting this into the integral gives: \[ I = \int t \sqrt{t^2 + 4} \cdot \frac{dt}{t \ln 2} = \frac{1}{\ln 2} \int \sqrt{t^2 + 4} \, dt \] ### Step 4: Integrate \( \sqrt{t^2 + 4} \) The integral \( \int \sqrt{t^2 + 4} \, dt \) can be solved using the standard formula: \[ \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left( x + \sqrt{x^2 + a^2} \right) + C \] In our case, \( a = 2 \): \[ \int \sqrt{t^2 + 4} \, dt = \frac{t}{2} \sqrt{t^2 + 4} + 2 \ln \left( t + \sqrt{t^2 + 4} \right) + C \] ### Step 5: Substitute back to \( x \) Now substituting back \( t = 2^x \): \[ I = \frac{1}{\ln 2} \left( \frac{2^x}{2} \sqrt{(2^x)^2 + 4} + 2 \ln \left( 2^x + \sqrt{(2^x)^2 + 4} \right) \right) + C \] This simplifies to: \[ I = \frac{2^x}{2 \ln 2} \sqrt{4^x + 4} + \frac{2}{\ln 2} \ln \left( 2^x + \sqrt{4^x + 4} \right) + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{2^x}{2 \ln 2} \sqrt{4^x + 4} + \frac{2}{\ln 2} \ln \left( 2^x + \sqrt{4^x + 4} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int sqrt(5-4x)dx

int sqrt(e^(x)-4)dx

int sqrt(x)-4/x^4 dx

int sqrt(3-4x^(2))dx

int sqrt(x^(2)-4)dx=

int sqrt(1-4x^(2))dx

int sqrt(4-9x^(2))dx

int sqrt(4x^(2)-9)dx

int sqrt(x)(x^(3)-4)dx

int sqrt(9 -4x^(2)) dx