Home
Class 12
MATHS
int [cosec (log x)] [1-cot (log x)] dx...

`int [cosec (log x)] [1-cot (log x)] dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \csc(\log x) (1 - \cot(\log x)) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \csc(\log x) (1 - \cot(\log x)) \, dx \] We can distribute the terms inside the integral: \[ \int \csc(\log x) \, dx - \int \csc(\log x) \cot(\log x) \, dx \] ### Step 2: Substitution Let \( t = \log x \). Then, the differential \( dx \) can be expressed as: \[ dx = e^t \, dt \] Now, substituting \( t \) into the integral gives us: \[ \int \csc(t) \, e^t \, dt - \int \csc(t) \cot(t) \, e^t \, dt \] ### Step 3: Solve the First Integral The integral \( \int \csc(t) \, dt \) is a standard integral: \[ \int \csc(t) \, dt = -\log |\csc(t) + \cot(t)| + C_1 \] ### Step 4: Solve the Second Integral The integral \( \int \csc(t) \cot(t) \, dt \) is also a standard integral: \[ \int \csc(t) \cot(t) \, dt = -\csc(t) + C_2 \] ### Step 5: Combine the Results Now we can combine the results of the two integrals: \[ -\log |\csc(t) + \cot(t)| + \csc(t) + C \] Substituting back \( t = \log x \): \[ -\log |\csc(\log x) + \cot(\log x)| + \csc(\log x) + C \] ### Final Answer Thus, the final result of the integral is: \[ -\log |\csc(\log x) + \cot(\log x)| + \csc(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(1+log x)dx

"int(1+log x)dx

int x^(x) (1+ log x) dx

int cos ecx log(cos ecx-cot x)dx

int(1)/(log x)dx

int[log(log x)+(1)/((log x)^(2))]dx

Evaluate: int csc x log(csc x-cot x)dx

int(1)/(x log x[log(log x)])*dx