Home
Class 12
MATHS
int (1)/(x(x^(3)-1))dx...

`int (1)/(x(x^(3)-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x(x^3 - 1)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{1}{x(x^3 - 1)} \, dx \] ### Step 2: Factor the Denominator Next, we factor the denominator: \[ x^3 - 1 = (x - 1)(x^2 + x + 1) \] Thus, we can rewrite the integral as: \[ I = \int \frac{1}{x (x - 1)(x^2 + x + 1)} \, dx \] ### Step 3: Partial Fraction Decomposition We will use partial fraction decomposition to break down the integrand: \[ \frac{1}{x (x - 1)(x^2 + x + 1)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{Cx + D}{x^2 + x + 1} \] Multiplying through by the denominator \( x (x - 1)(x^2 + x + 1) \) gives: \[ 1 = A(x - 1)(x^2 + x + 1) + Bx(x^2 + x + 1) + (Cx + D)x(x - 1) \] ### Step 4: Solve for Coefficients To find the coefficients \( A, B, C, D \), we can substitute suitable values for \( x \) or equate coefficients from both sides. After solving, we find: - \( A = \frac{1}{3} \) - \( B = \frac{1}{3} \) - \( C = 0 \) - \( D = -\frac{1}{3} \) Thus, we can rewrite the integral as: \[ I = \int \left( \frac{1/3}{x} + \frac{1/3}{x - 1} - \frac{1/3}{x^2 + x + 1} \right) \, dx \] ### Step 5: Integrate Each Term Now we can integrate each term separately: \[ I = \frac{1}{3} \int \frac{1}{x} \, dx + \frac{1}{3} \int \frac{1}{x - 1} \, dx - \frac{1}{3} \int \frac{1}{x^2 + x + 1} \, dx \] The first two integrals yield: \[ \frac{1}{3} \ln |x| + \frac{1}{3} \ln |x - 1| \] For the third integral, we complete the square in the denominator: \[ x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \] Thus, \[ \int \frac{1}{x^2 + x + 1} \, dx = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right) \] ### Step 6: Combine Results Combining all parts, we have: \[ I = \frac{1}{3} \ln |x| + \frac{1}{3} \ln |x - 1| - \frac{1}{3} \cdot \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right) + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{3} \ln |x(x - 1)| - \frac{2}{3\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x(1+x^(3)))dx=

(d)/(dx)(int(1)/(x^(3)(x-1))dx)=

int_(2)^(3)(1)/(x(x^(3)-1))dx=

Evaluate: int(1)/(x^(4)+3x^(2)+1)dx

Evaluate the integral int1/(x^(3)(x-1))dx .

int(1)/(x(x^((3)/(2))+1))dx=(2)/(3)log((x^((3)/(2)))/(x^((3)/(2))+1))+c

int(1)/(x.sqrt(1-x^(3)))dx=

Evaluate : int_(1)^(2)(x^(3)-1)/(x^(2))dx

Evaluate the integral int(1)/(x^(3)sqrt(x-1))dx .