Home
Class 12
MATHS
If f'(x)= x-(3)/(x^(3)), f(1) = (11)/(2)...

If `f'(x)= x-(3)/(x^(3)), f(1) = (11)/(2)` find f(x)

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given its derivative \( f'(x) = x - \frac{3}{x^3} \) and the initial condition \( f(1) = \frac{11}{2} \), we will follow these steps: ### Step 1: Integrate \( f'(x) \) We start by integrating \( f'(x) \) to find \( f(x) \): \[ f(x) = \int f'(x) \, dx = \int \left( x - \frac{3}{x^3} \right) dx \] ### Step 2: Break down the integral We can split the integral into two parts: \[ f(x) = \int x \, dx - \int \frac{3}{x^3} \, dx \] ### Step 3: Compute the first integral The integral of \( x \) is: \[ \int x \, dx = \frac{x^2}{2} \] ### Step 4: Compute the second integral The integral of \( \frac{3}{x^3} \) can be rewritten as \( 3x^{-3} \): \[ \int \frac{3}{x^3} \, dx = 3 \int x^{-3} \, dx = 3 \left( \frac{x^{-2}}{-2} \right) = -\frac{3}{2x^2} \] ### Step 5: Combine the results Now, combining both integrals, we have: \[ f(x) = \frac{x^2}{2} + \frac{3}{2x^2} + C \] where \( C \) is the constant of integration. ### Step 6: Use the initial condition to find \( C \) We know that \( f(1) = \frac{11}{2} \). Substituting \( x = 1 \): \[ f(1) = \frac{1^2}{2} + \frac{3}{2 \cdot 1^2} + C = \frac{1}{2} + \frac{3}{2} + C = \frac{4}{2} + C = 2 + C \] Setting this equal to \( \frac{11}{2} \): \[ 2 + C = \frac{11}{2} \] ### Step 7: Solve for \( C \) Subtracting 2 from both sides: \[ C = \frac{11}{2} - 2 = \frac{11}{2} - \frac{4}{2} = \frac{7}{2} \] ### Step 8: Write the final function Now we can write the final expression for \( f(x) \): \[ f(x) = \frac{x^2}{2} + \frac{3}{2x^2} + \frac{7}{2} \] ### Summary of the solution Thus, the function \( f(x) \) is: \[ f(x) = \frac{x^2}{2} + \frac{3}{2x^2} + \frac{7}{2} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x).

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x)

If f'(x)=(1)/(x)+x^(2) and f(1)=(4)/(3) then find the value of f(x)

If f'(x)=x-3/x^2,f(1)=11/2 , find f(x).

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

Find domain(i) f(x) = (1)/(x - 5) (ii) f(x) = (3 - x)/(x - 3) (iii) f(x) = (x^(2) - 1)/(x - 1) (iv) f(x) = (| x - 3 |)/(x - 3) (v) f(x) = (1)/(2 - sin 3x)

If 2f(x)-3f((1)/(x))=6x+(1)/(x) then find f(x) and f(2)

If f'(x) = x-3/x^2,f(1)=11/2 , then f(x)=……..

If f(x)=(1)/(x), f_(2) (x)=1-x, f_(3) (x)=1/(1-x) then find J(x) such that f_(2) o J o f_(1) (x)=f_(3) (x) (a) f_(1) (x) (b) (1)/(x) f_(3) (x) (c) f_(3) (x) (d) f_(2) (x)