Home
Class 12
MATHS
int (6x^(3) + 5x^(2)-7)/(3x^(2)-2x-7)dx...

`int (6x^(3) + 5x^(2)-7)/(3x^(2)-2x-7)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 7} \, dx, \] we will use polynomial long division followed by integration. ### Step 1: Polynomial Long Division We start by dividing \(6x^3 + 5x^2 - 7\) by \(3x^2 - 2x - 7\). 1. Divide the leading term: \(\frac{6x^3}{3x^2} = 2x\). 2. Multiply \(2x\) by \(3x^2 - 2x - 7\): \[ 2x(3x^2 - 2x - 7) = 6x^3 - 4x^2 - 14x. \] 3. Subtract this from \(6x^3 + 5x^2 - 7\): \[ (6x^3 + 5x^2 - 7) - (6x^3 - 4x^2 - 14x) = 9x^2 + 14x - 7. \] Now, we rewrite the integral: \[ I = \int \left(2x + \frac{9x^2 + 14x - 7}{3x^2 - 2x - 7}\right) \, dx. \] ### Step 2: Integrate the Polynomial Part Now we can integrate the polynomial part: \[ \int 2x \, dx = x^2 + C_1. \] ### Step 3: Integrate the Rational Part Next, we need to integrate the rational part: \[ \int \frac{9x^2 + 14x - 7}{3x^2 - 2x - 7} \, dx. \] We can simplify this further by performing polynomial long division again if necessary, or we can directly integrate it using substitution or partial fractions. 1. **Perform Polynomial Long Division Again**: - Divide \(9x^2\) by \(3x^2\) to get \(3\). - Multiply \(3\) by \(3x^2 - 2x - 7\): \[ 3(3x^2 - 2x - 7) = 9x^2 - 6x - 21. \] - Subtract: \[ (9x^2 + 14x - 7) - (9x^2 - 6x - 21) = 20x + 14. \] Thus, we can rewrite the integral as: \[ I = \int \left(2x + 3 + \frac{20x + 14}{3x^2 - 2x - 7}\right) \, dx. \] ### Step 4: Integrate Each Part Now we can integrate each part: 1. \(\int 3 \, dx = 3x + C_2\). 2. For \(\int \frac{20x + 14}{3x^2 - 2x - 7} \, dx\), we can use substitution: - Let \(u = 3x^2 - 2x - 7\), then \(du = (6x - 2)dx\). - Rewrite \(dx\) in terms of \(du\). ### Step 5: Final Integration After performing the integration of the rational part, we combine all parts: \[ I = x^2 + 3x + \text{(result from rational part)} + C, \] where \(C\) is the constant of integration. ### Final Answer The final result will be: \[ I = x^2 + 3x + \frac{10}{3} \ln |3x^2 - 2x - 7| + \text{(other terms)} + C. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)+x^(2)+6x+7)/(x^(2))dx

int(3x^(2)+7)dx

int(x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6)dx=

int(6x^(3)+15x^(2)-7x-2)/(sqrt(2x^(2)-2x+1))dx

int(x^(2)-5x+7)dx

int(x^(2)-5x+7)dx

int(2x^(4)+7x^(3)+6x^(2))/(x^(2)+2x)dx

int(x^(3)+3x^(2)+2x-7)/(2x+1)dx

int(1)/(3x^(2)+7)dx

int(1)/(3x^(2)+7)dx