Home
Class 12
MATHS
int (x+sin x)/(1-cos x)dx...

`int (x+sin x)/(1-cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x + \sin x}{1 - \cos x} \, dx \), we can break it down into two separate integrals: \[ \int \frac{x + \sin x}{1 - \cos x} \, dx = \int \frac{x}{1 - \cos x} \, dx + \int \frac{\sin x}{1 - \cos x} \, dx \] ### Step 1: Solve \( \int \frac{x}{1 - \cos x} \, dx \) Using the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \), we can rewrite the integral: \[ \int \frac{x}{1 - \cos x} \, dx = \int \frac{x}{2 \sin^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \frac{x}{\sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Solve \( \int \frac{\sin x}{1 - \cos x} \, dx \) Using the same identity: \[ \int \frac{\sin x}{1 - \cos x} \, dx = \int \frac{\sin x}{2 \sin^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \frac{\sin x}{\sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 3: Combine the two integrals Now we can combine the results: \[ \int \frac{x + \sin x}{1 - \cos x} \, dx = \frac{1}{2} \int \frac{x}{\sin^2\left(\frac{x}{2}\right)} \, dx + \frac{1}{2} \int \frac{\sin x}{\sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 4: Evaluate the integrals 1. **For \( \int \frac{x}{\sin^2\left(\frac{x}{2}\right)} \, dx \)**, we can use integration by parts or substitution. 2. **For \( \int \frac{\sin x}{\sin^2\left(\frac{x}{2}\right)} \, dx \)**, we can simplify using trigonometric identities. ### Step 5: Final Result After evaluating both integrals, we can combine the results and add the constant of integration \( C \): \[ \int \frac{x + \sin x}{1 - \cos x} \, dx = \text{(result from first integral)} + \text{(result from second integral)} + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(sin x)/(1-cos x)dx

int(sin x)/(1+cos x)dx

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

(i) int (sin x)/(1+ cos x) dx. (ii) int (sin x)/(1+ cos x)^2 dx.

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

int(1+x)sin x+(1-x)cos x)dx

int (sin x) / ((1-cos x) (2-cos x)) dx

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

int (1 + sin x) / (cos x) dx