Home
Class 12
MATHS
int (x^(2))/((x^(2) +1) (x^(2)-2) (x^(2)...

`int (x^(2))/((x^(2) +1) (x^(2)-2) (x^(2) + 3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2}{(x^2 + 1)(x^2 - 2)(x^2 + 3)} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( x^2 = t \). Then, \( dx = \frac{1}{2\sqrt{t}} dt \) or \( dx = \frac{1}{2\sqrt{x^2}} dt = \frac{1}{2\sqrt{t}} dt \). Substituting in the integral, we have: \[ \int \frac{t}{(t + 1)(t - 2)(t + 3)} \cdot \frac{1}{2\sqrt{t}} dt = \frac{1}{2} \int \frac{t^{1/2}}{(t + 1)(t - 2)(t + 3)} dt. \] ### Step 2: Partial Fraction Decomposition Next, we perform partial fraction decomposition on \[ \frac{t}{(t + 1)(t - 2)(t + 3)}. \] We can express this as: \[ \frac{t}{(t + 1)(t - 2)(t + 3)} = \frac{A}{t + 1} + \frac{B}{t - 2} + \frac{C}{t + 3}. \] Multiplying through by the denominator \((t + 1)(t - 2)(t + 3)\) gives: \[ t = A(t - 2)(t + 3) + B(t + 1)(t + 3) + C(t + 1)(t - 2). \] ### Step 3: Solve for Coefficients To find \(A\), \(B\), and \(C\), we can substitute convenient values for \(t\): 1. Let \(t = -1\): \[ -1 = A(-3)(2) \implies A = \frac{1}{6}. \] 2. Let \(t = 2\): \[ 2 = B(3)(5) \implies B = \frac{2}{15}. \] 3. Let \(t = -3\): \[ -3 = C(-2)(-4) \implies C = \frac{3}{10}. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral as: \[ \frac{1}{2} \int \left( \frac{1/6}{t + 1} + \frac{2/15}{t - 2} + \frac{3/10}{t + 3} \right) dt. \] ### Step 5: Integrate Each Term Now we integrate each term separately: 1. \(\int \frac{1}{t + 1} dt = \ln |t + 1|\). 2. \(\int \frac{1}{t - 2} dt = \ln |t - 2|\). 3. \(\int \frac{1}{t + 3} dt = \ln |t + 3|\). Thus, we have: \[ \frac{1}{2} \left( \frac{1}{6} \ln |t + 1| + \frac{2}{15} \ln |t - 2| + \frac{3}{10} \ln |t + 3| \right) + C. \] ### Step 6: Substitute Back Substituting back \(t = x^2\): \[ = \frac{1}{12} \ln |x^2 + 1| + \frac{1}{15} \ln |x^2 - 2| + \frac{1}{20} \ln |x^2 + 3| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2}{(x^2 + 1)(x^2 - 2)(x^2 + 3)} \, dx = \frac{1}{12} \ln |x^2 + 1| + \frac{1}{15} \ln |x^2 - 2| + \frac{1}{20} \ln |x^2 + 3| + C. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/((x^(2)+1)(x^(2)+3))dx

Evaluate int((x^(2)-4))/((x^(2)+1)(x^(2)+2)(x^(2)+3))dx

int(3x^(2)+1)/(x(x^(2)+1))dx

int(x^(2))/((1+x^(3))(2+x^(3)))dx

int (1+3x^2)/(x(1+x^2)) dx

Evaluate: int((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))dx

int(x^(2)+3)/(x^(6)(x^(2)+1))dx

int(x^(2)+3)/(x^(6)(x^(2)+1))dx

int(x^(2)+3)/(x^(6)(x^(2)+1))dx