Home
Class 12
MATHS
int (1)/(sin x(3+2 cos x))dx...

`int (1)/(sin x(3+2 cos x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sin x (3 + 2 \cos x)} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{1}{\sin x (3 + 2 \cos x)} \, dx \] ### Step 2: Multiply by \(\sin x\) We can multiply and divide by \(\sin x\): \[ I = \int \frac{\sin x}{\sin^2 x (3 + 2 \cos x)} \, dx = \int \frac{\sin x}{(1 - \cos^2 x)(3 + 2 \cos x)} \, dx \] ### Step 3: Substitution Let \( t = \cos x \). Then, \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). Substituting these into the integral gives: \[ I = -\int \frac{dt}{(1 - t^2)(3 + 2t)} \] ### Step 4: Factor the Denominator We can rewrite the denominator: \[ 1 - t^2 = (1 - t)(1 + t) \] Thus, the integral becomes: \[ I = -\int \frac{dt}{(1 - t)(1 + t)(3 + 2t)} \] ### Step 5: Partial Fraction Decomposition We will perform partial fraction decomposition: \[ \frac{1}{(1 - t)(1 + t)(3 + 2t)} = \frac{A}{1 - t} + \frac{B}{1 + t} + \frac{C}{3 + 2t} \] Multiplying through by the denominator: \[ 1 = A(1 + t)(3 + 2t) + B(1 - t)(3 + 2t) + C(1 - t)(1 + t) \] ### Step 6: Solve for Coefficients Expanding and equating coefficients will give us a system of equations to solve for \( A \), \( B \), and \( C \). 1. Set \( t = 1 \): \[ 1 = A(2)(5) \implies A = \frac{1}{10} \] 2. Set \( t = -1 \): \[ 1 = B(2)(1) \implies B = \frac{1}{2} \] 3. Set \( t = -\frac{3}{2} \): \[ 1 = C\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) \implies C = \frac{4}{5} \] ### Step 7: Substitute Back into the Integral Now substituting back, we have: \[ I = -\left( \frac{1}{10} \int \frac{dt}{1 - t} + \frac{1}{2} \int \frac{dt}{1 + t} + \frac{4}{5} \int \frac{dt}{3 + 2t} \right) \] ### Step 8: Integrate Each Term Integrating each term: 1. \(\int \frac{dt}{1 - t} = -\log |1 - t|\) 2. \(\int \frac{dt}{1 + t} = \log |1 + t|\) 3. \(\int \frac{dt}{3 + 2t} = \frac{1}{2} \log |3 + 2t|\) Thus: \[ I = -\left( \frac{1}{10} (-\log |1 - t|) + \frac{1}{2} \log |1 + t| + \frac{4}{5} \cdot \frac{1}{2} \log |3 + 2t| \right) + C \] ### Step 9: Substitute Back for \( t \) Substituting back \( t = \cos x \): \[ I = \frac{1}{10} \log |1 - \cos x| - \frac{1}{2} \log |1 + \cos x| - \frac{2}{5} \log |3 + 2 \cos x| + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{10} \log |1 - \cos x| - \frac{1}{2} \log |1 + \cos x| - \frac{2}{5} \log |3 + 2 \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DEFINITE INTEGRATION|59 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATIONS OF DERIVATIVE |44 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(sin x(3+2cos x))dx

Evaluate: int(1)/(sin x(3+2cos x)dx)

Evaluate: int(1)/(sin x(2+3cos x)dx)

Evaluate: (i) int(1)/(sin^(3)x cos^(5)x)dx (ii) int(1)/(sin^(3)x cos x)dx

int(1)/((3sin x+cos x)^(2))dx

Evaluate: int(1)/(3+2sin x+cos x)dx

Evaluate : int 1/(3+2 sin x + cos x) dx.

int(cos 2x)/(1+sin x cos x)dx

int(dx)/(1-sin x-cos x)=