Home
Class 12
MATHS
If I(1)=overset(e^(2))underset(e )int(dx...

If `I_(1)=overset(e^(2))underset(e )int(dx)/(logx)"and "I_(2)=overset(2)underset(1)int(e^(x))/(x)dx`,then

A

`I_(1) = (1)/(3) I_(2)`

B

`I_(1) + I_(2) = 0 `

C

`I_(1) + 2I_(2)`

D

`I_(1) = I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then

I=int(e^x)/(e^(x)-1)dx

int(e^(2x))/(1+e^(2x))dx=

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

I=int(e^(2x)-1)/(e^(2x))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int(e^(2x)+1)/(e^(2x)-1)dx=