Home
Class 12
MATHS
Evaluate : int((pi)/(6))^((pi)/(3)) cos ...

Evaluate : `int_((pi)/(6))^((pi)/(3)) cos x dx `.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos x \, dx \), we can follow these steps: ### Step 1: Identify the integral We need to evaluate the integral of \( \cos x \) from \( \frac{\pi}{6} \) to \( \frac{\pi}{3} \). ### Step 2: Find the antiderivative The antiderivative of \( \cos x \) is \( \sin x \). Therefore, we can write: \[ \int \cos x \, dx = \sin x + C \] where \( C \) is the constant of integration. ### Step 3: Apply the limits of integration Now we will evaluate the definite integral using the limits: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos x \, dx = \left[ \sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \] This means we will compute \( \sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{6}\right) \). ### Step 4: Calculate \( \sin\left(\frac{\pi}{3}\right) \) and \( \sin\left(\frac{\pi}{6}\right) \) We know: - \( \sin\left(\frac{\pi}{3}\right) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \) - \( \sin\left(\frac{\pi}{6}\right) = \sin(30^\circ) = \frac{1}{2} \) ### Step 5: Substitute the values into the expression Now we substitute these values into the expression: \[ \sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} - \frac{1}{2} \] ### Step 6: Simplify the expression To simplify: \[ \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos x \, dx = \frac{\sqrt{3} - 1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_((pi)/(6))^((pi)/(3)) sin^(2) x dx

Evaluate : int_(-(pi)/(2))^((pi)/(2))(cos x)/(1+e^(x))dx

Evaluate: int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate: int_(-(pi)/(4))^(n pi-(pi)/(4))|sin x+cos x|dx

Evaluate int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tan x))

int_(-(pi)/(2))^((pi)/(2))[sin|x|-cos|x|dx

Evaluate : int_(-pi/3)^(pi/3)sin^3 x dx

int_(pi//6)^(pi//3)cos^(2)x dx=