Home
Class 12
MATHS
Evaluate : int(0)^((pi)/(4)) sec^(2) x...

Evaluate : `int_(0)^((pi)/(4)) sec^(2) x dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx \), we can follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ \int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx \] ### Step 2: Recall the antiderivative The antiderivative of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x + C \] where \( C \) is the constant of integration. ### Step 3: Apply the limits of integration Now we will apply the limits from \( 0 \) to \( \frac{\pi}{4} \): \[ \left[ \tan x \right]_{0}^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan(0) \] ### Step 4: Calculate the values of the tangent function We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan(0) = 0 \] Thus, substituting these values gives: \[ \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1 - 0 = 1 \] ### Step 5: Final answer Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx = 1 \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^((pi)/(4)) sec^(4) x dx

Evaluate :int_(0)^((pi)/(4))sec xdx

int_(0)^(pi//4)x sec^(2)x " " dx =

int_(0)^(pi//4) sec^(4) x" dx =

Evaluate: int_(0)^((pi)/(4)) (sec^(2)x)/(3 tan^(2) x+4 tan x+1)dx

int_(0)^(pi//4) x sec^(2)xdx =

int_(0)^(pi//4) sec^(4) x " " dx =

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

" 2.Evaluate "int_(0)^( pi/4)sec^(2)xdx

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=