Home
Class 12
MATHS
Evaluate : int(0)^(1) (-1)/(sqrt(1-x^(2...

Evaluate : `int_(0)^(1) (-1)/(sqrt(1-x^(2)) )dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{0}^{1} \frac{-1}{\sqrt{1-x^2}} \, dx, \] we can follow these steps: ### Step 1: Identify the integral We have the integral \[ \int_{0}^{1} \frac{-1}{\sqrt{1-x^2}} \, dx. \] ### Step 2: Use the known integral formula We know from integral calculus that \[ \int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}(x) + C. \] Thus, \[ \int \frac{-1}{\sqrt{1-x^2}} \, dx = -\sin^{-1}(x) + C. \] ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from 0 to 1: \[ \int_{0}^{1} \frac{-1}{\sqrt{1-x^2}} \, dx = \left[-\sin^{-1}(x)\right]_{0}^{1}. \] ### Step 4: Calculate the values at the limits Now we substitute the limits into the expression: 1. At \(x = 1\): \[ -\sin^{-1}(1) = -\frac{\pi}{2}. \] 2. At \(x = 0\): \[ -\sin^{-1}(0) = 0. \] ### Step 5: Combine the results Now, we combine the results from the limits: \[ \left[-\sin^{-1}(x)\right]_{0}^{1} = -\frac{\pi}{2} - 0 = -\frac{\pi}{2}. \] ### Final Answer Thus, the value of the integral is \[ -\frac{\pi}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1) (x)/(sqrt(1+x^(2)))dx

int_(0)^(1) (x)/(sqrt(1+x^(2)))dx=?

Evaluate :int_(0)^((1)/(2))(1)/(sqrt(1-x^(2)))dx

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

Evaluate: int_(0)^(1) (1)/(sqrt(3+2x-x^(2))dx

Evaluate int_(0)^(1) (sin^(-1)x)/(sqrt(1-x^(2)))dx .

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

Evaluate int_(0)^(1)(ln x)/(sqrt(1-x^(2)))dx