Home
Class 12
MATHS
Evaluate : int(1)^(2) (x )/(1+x^(2))dx...

Evaluate : `int_(1)^(2) (x )/(1+x^(2))dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{1}^{2} \frac{x}{1+x^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 + x^2 \). Then, differentiate both sides with respect to \( x \): \[ dt = 2x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{2} \] ### Step 2: Change the limits of integration Now we need to change the limits of integration according to our substitution: - When \( x = 1 \): \[ t = 1 + 1^2 = 2 \] - When \( x = 2 \): \[ t = 1 + 2^2 = 5 \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ I = \int_{2}^{5} \frac{1}{t} \cdot \frac{dt}{2} \] This simplifies to: \[ I = \frac{1}{2} \int_{2}^{5} \frac{1}{t} \, dt \] ### Step 4: Evaluate the integral The integral \( \int \frac{1}{t} \, dt \) is \( \log |t| \). Therefore: \[ I = \frac{1}{2} \left[ \log t \right]_{2}^{5} \] Calculating this gives: \[ I = \frac{1}{2} \left( \log 5 - \log 2 \right) \] ### Step 5: Simplify the result Using the properties of logarithms, we can combine the logs: \[ I = \frac{1}{2} \log \left( \frac{5}{2} \right) \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{2} \log \left( \frac{5}{2} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(1)^(2)(x^(3)-1)/(x^(2))dx

Evaluate : int_(-1)^(1)(x^(2))/(1+x^(2))dx

Evaluate int_(-1)^(2)(x^(2))/(x^(2)+2)dx

Evaluate: int_(1)^(2)x^(2)dx

Evaluate :int_(1)^(2)(x+3)/(x(x+2))dx

Evaluate: int_(1)^(2)(1)/((x+1)(x+2))dx( ii) int_(1)^(2)(1)/(x(1+x^(2)))dx

Evaluate :int_(1)^(2)((x-1)/(x^(2)))e^(x)dx

Evaluate int _(1) ^(2) (1)/( x ^(2) + 4x +3) dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx