Home
Class 12
MATHS
Evaluate : int(0) ^(1)(e^(x))/(sqrt(e^x-...

Evaluate : `int_(0) ^(1)(e^(x))/(sqrt(e^x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{e^x}{\sqrt{e^x - 1}} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let us set \[ e^x - 1 = t^2. \] Then, differentiating both sides gives: \[ e^x \, dx = 2t \, dt. \] ### Step 2: Change of Limits Now we need to change the limits of integration. - When \( x = 0 \): \[ e^0 - 1 = 0 \implies t^2 = 0 \implies t = 0. \] - When \( x = 1 \): \[ e^1 - 1 = e - 1 \implies t^2 = e - 1 \implies t = \sqrt{e - 1}. \] ### Step 3: Rewrite the Integral Now we can rewrite the integral \( I \): \[ I = \int_{0}^{\sqrt{e - 1}} \frac{e^x}{\sqrt{t^2}} \cdot \frac{2t}{e^x} \, dt. \] Since \( e^x = t^2 + 1 \), we can simplify this: \[ I = \int_{0}^{\sqrt{e - 1}} \frac{2t}{t} \, dt = \int_{0}^{\sqrt{e - 1}} 2 \, dt. \] ### Step 4: Evaluate the Integral Now, we can evaluate the integral: \[ I = 2 \int_{0}^{\sqrt{e - 1}} dt = 2 \left[ t \right]_{0}^{\sqrt{e - 1}} = 2 \left( \sqrt{e - 1} - 0 \right) = 2\sqrt{e - 1}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{2\sqrt{e - 1}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

Evaluate int_(0)^(1)e^(2-3x)dx

Evaluate int_(0)^(1)e^(2-3x)dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int(e^(x))/(sqrt(e^(2x)-1))dx=

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)x e^(x)dx=